
Anonymous Identity and Trust for Peer-to-Peer Networks

Tom Murphy VII, Amit K. Manjhi

April 29, 2002

Abstract

In this paper, we present a new way of establish-
ing independently-verifiable identities, based on the
notion of computationally expensive key generation.
We then describe a fully decentralized framework
where these identities can be used to assign blame
and to construct auditable blacklists of cheaters.

1 Introduction

With the proliferation of broadband in the home,
peer-to-peer networks are becoming more and more
popular. Though they are primarily used for file shar-
ing (because their high degree of anonymity and low
amount of liability), tremendous possibilities exist for
their use for other purposes. (Several examples are
given throughout this paper.)

Unfortunately, true peer-to-peer networks face a
number of problems. One of the most daunting is the
difficulty in policing a network without centralized
authority. One of the major factors that makes this
hard is the anonymity of the participants. Even if one
user determines that another user is up to no good,
he has almost no chance of successfully sharing this
information with others—there’s no way for him to
uniquely identify the troublemaker, and no reason for
anybody to believe him, anyway.

This paper is organized as follows. First, we
present a new way of establishing independently-
verifiable identities, based on the notion of compu-
tationally expensive key generation. We then dis-
cuss different models of trust, including one well-
suited to peer-to-peer networks. We then describe
a fully decentralized framework where these identi-
ties can be used to assign blame and to construct
auditable blacklists of cheaters. Finally, we propose
several other applications that could benefit from our
scheme, and discuss some related work.

2 Identity

The notion of identity is subtle, and the word has
many possible meanings. One might consider iden-
tity as something fixed, or varying over time, or re-
lated to autonomy, or even something metaphysical
like a soul or consciousness. For our purposes, we
consider identity simply to be a way of aggregating
responsibility for past actions.

Identities are not necessarily in one-to-one corre-
spondence with individuals. Bruce Wayne maintains
two identities, that of “Bruce” and that of “Batman”,
in order to protect his estate from his arch nemeses.
Corporations in the United States are given special
identities to financially protect the owners and share-
holders.

Since identities aggregate blame (especially) for
actions, there is an implicit element of trust when
sharing identities. If Bruce lets his butler Alfred use
his credit card to order things online, he does so be-
cause he is willing to share responsibility for Alfred’s
actions. When Alfred creates a new username and
password every time he posts irrelevant nonsense to
the Gotham Gazette online message board, he does
so to keep the administrators from being able to suc-
cessfully ban him. That is, he doesn’t want his past
actions to be reflected in his new identities, so he
simply generates a new identity for each infraction.

When identities are assigned by a central author-
ity, such as in the form of Social Security Numbers or
Corporate Tax IDs, it is difficult to amass a collection
of disposable identities. However, in a decentralized
system without trusted authorities, this becomes a
more difficult problem. Some systems use informa-
tion such as IP or MAC addresses, but this is an un-
satisfying solution because of factors such as Dynamic
IPs, Network Address Translation, IP spoofing, and
shared or public computers.

In a decentralized system, we can’t rely on a
trusted authority to limit the number of identities

1

that Alfred can generate. Therefore, we must rely
on intrinsic properties of the identity. Furthermore,
we need to be able to independently verify identi-
ties, so that anyone can check that someone is who
he claims he is. To do this, we combine two notions
from cryptography: public/private keys, and one-way
functions.

2.1 Computationally Expensive Iden-
tity Generation

Our system has the following properties:

1. Allows the generation of an identity with a spec-
ified strength

2. Associates a token with the identity that al-
lows for the easy independent verification of its
strength. Others know an identity by this token

3. Allows for signing of messages, certifying that
they came from a particular identity

4. Allows the strength of an identity to grow over
time

We’re able to achieve most of these goals by sim-
ply using a standard public key cryptosystem such as
RSA[4]. We take the identity to be the public/private
key pair, and use the public key as the identifying to-
ken. By identifying a user only by his key, we preserve
his “real world” anonymity while still being able to
address him precisely on the network. 1

However, we want to prevent Alfred from gen-
erating lots of keys. We do so by imposing an ad-
ditional requirement on identifying tokens. Such a
token must consist of a public key and an arbitrary
bit string, which we call salt. Suppose the function
last (s, n) returns the last n bits of string s. Then,
the strength of such a token is the maximum b such
that

last(hash(salt, pubkey), b) = last(pubkey, b)

That is, we require that the hash of the salt and
the key collide with the key on the last b bits. As-
suming that producing partial collisions for our hash

1Note that by equating a user with his public key, we
sidestep many of the key management issues with public key
systems, such as man-in-the-middle attacks. We are able to do
so primarily because we use the keys for authentication, not
secrecy.

function is difficult, generating a salt that yields a
high key strength will be computationally expensive.

An identity token’s strength can be indepen-
dently verified by simply computing the hash and
checking that the bits collide. This computation is
simple and fast compared to the time it took to gen-
erate the salt. A user may choose to not accept a
token that does not have at least a certain minimum
strength, making it arbitrarily difficult for Alfred to
generate many identities. We expect that the appro-
priate acceptable strength level will be determined
through social means—a balancing of the annoyance
of generating a key with the amount of throw-away
identities that users are willing to tolerate. We guess
that a dozen or so CPU-hours on a modern machine
would be in the right ballpark.

Now, since it takes significant resources to gen-
erate and maintain keys, identities are valuable, and
even malcontents have an incentive to protect them.

2.1.1 Growing Strength

We need the ability for identities to grow in strength
as time passes. Computers tend to get faster at an
exponential rate, so what is a socially acceptable key
strength one year may be unacceptable the next. For-
tunately, the salt string is independent from the key,
so a user can generate new, stronger salt as he up-
grades his computer, while retaining the same iden-
tity.

To find out how quickly a user needs to gener-
ate stronger salts, we need to investigate how hard
it is for a principal (we use the term principal inter-
changably with the term user) to generate a salt of
strength k. Besides this, we also consider the related
question that if the principal has scanned n salts,
how many of these salts should it communicate to its
peer while transacting, so as to accurately represent
the amount of work it has done. Let us approach
these questions from a probabilistic view-point. All
subsequent derivations that we do are based on ex-
pectations. The governing equation that determines
the strength of a salt has a fixed number on the right
hand side, which is the public key or the identity of
the principal. This is compared to the output of a
one-way hash function, the output of which is uni-
formly distributed over the entire range. Thus, the
probability of a salt having at least strength i is 1

2i

(since the last i bits need to be the same). This an-
swers the first question - to generate a salt of strength
at least k, a minimum of 2k salts need to be tried.

2

The second question is concerned with finding
the sweet-spot between sending more salts, and hav-
ing the other peer know more accurately about the
work a principal has done. If 2k salts are tried, there
is a definite chance of finding at least one salt with
strength k. But, the number of salts with strength at
least k is likely to remain the same even if 2(k+1) − 1
salts have been tried. Thus, if only the salt with the
highest strength is sent, the estimate it provides is
correct within a factor of 2 (This is because a sin-
gle salt of strength k could have been obtained either
when only 2k salts had been tried, or when 2(k+1)−1
salts had been tried). Thus, the probability of er-
ror in this case is 1

2 . Similarly, it can be shown that
if a principal sends d of its best hashes (such that it
does not happen that a salt of a particular strength is
sent but another salt of the same strength is left out),
the amount of work that its peer estimates can be at
most off by a factor of d

d+1 from the real amount of
work done. This is because sending a salt of strength
k does not reveal anything about which salts have
been tried (A more complete proof of the previous
statement is mentioned in the appendix). Thus, to
make the error probability additive instead of multi-
plicative, O(n) salts need to be sent.

In practice, sending O(n) hashes is not feasible
because the overhead of transmitting the O(n) hashes
would be too high. Moreover, the receiving principal
would be required to do an O(n) amount of work to
verify the message. We hope that principals would
use a sliding window kind of thing, to send their best
c salts, so that, the chances of error remain bounded
by c

c+1 .

2.1.2 Further Refinements

One complaint to make about the salt system de-
scribed is that we assume that the salt was generated
through the hard work of the identity’s owner, when
in fact there’s no reason it couldn’t have come from
someone else. (Perhaps there is an evil mastermind
with a supercomputer, who, out of the blackness of
his heart, gives out strong salt to all of his favorite
scoundrels.)

If we’d like for only the owner of the identity to
be able to create salt, we can change our equation to
the following:

last(hash(salt, signprvkey(salt), pubkey), b) =
last(pubkey, b)

Now, we require that identifying token include a
signed version of the salt. This cannot be generated
without the private key, so a user would have to reveal
his key in order for someone to help him generate salt.

However, this adds significant overhead to the
size of an identity token and the ease with which we
can check it. Since its benefit is dubious, we consider
only the simplified earlier form in the remainder of
this paper.

Now, having set up our notion of identity and
the operations we support, we can begin to look at
establishing and propagating trust.

3 Trust

The concept of what constitutes trust has been widely
studied in areas like philosophy, economics, psychol-
ogy and sociology. It has come to mean different
things like personal trust, (“I trust that my parents
would always do things for my own good”), trust be-
cause of good actions in the past, trust because of
the perceived utility and trust because of one’s per-
ception about others. The notion of trust that we
use in this work, is to associate a principal with the
good/bad actions it has committed in the past, and
to use past behavior as an indicator of the future be-
havior. Clearly, the idea of identity is central to this
notion of trust, and depending on how identities in
a system are modeled, we have the following trust
architectures:

1. Indistinguishable identities: It requires but
little reflection to see that trust cannot be mod-
eled in a system with faceless principals, because
principals cannot associate the good/bad behav-
ior they have seen in the past with any other
principal. An FTP server with username anony-
mous and password guest would be an example
of this. A slightly improved version of this is
one in which identities exist, but they are easy
to create and fake. It is evident that this weak
concept of identity is insufficient to model trust.

2. Identity easy to create but difficult to fake:
In this system, it is possible to associate good
actions with a principal, but there is nothing in
this system to prevent a chiseler from commit-
ting misdeeds, creating a new identity and start-
ing all over again with a clean slate. This is the
familiar case of Slashdot karma wherein users are
rewarded for their good deeds. The creation of

3

an identity is cheap, but building a reputation is
difficult because reputation now depends on the
good deeds that the principal has committed in
the past. The major drawback of this kind of
system is that it is unable to keep track of the
misdeeds committed by a principal and hence,
there is little incentive for good behavior unless
the principal’s rating is high.

3. Identity difficult to create or fake: This is a
viable model for building and propagating trust
as it can keep track of both the good as well
as the bad actions committed by a principal in
the past. Shysters can no longer run scot-free as
every time they discard their old identity, they
need to do a lot of work to create a new one.

4. Identity certified by an oracle: This is the
familiar case of a certifying authority or an or-
acle, which is believed by everyone in the sys-
tem, and it keeps track of behavior of all users in
the system. If the trusted authority is infallible,
then, clearly this is the most favorable case as
far as building a trust model is concerned. But,
in practice, having an infallible trusted authority
is extremely difficult.

The present system that we propose falls in the
third category. By making identity generation com-
putationally expensive, we hope that even rogue prin-
cipals would want to protect their identity. Though
an infallible oracle would be nice to have, our solution
is both practical and more powerful than categories
1 and 2.

Though it is possible to use our system to track
both the good and the bad actions a principal has
committed in the past, we record only the bad actions
and tolerate nothing but strict compliance with the
rules. Thus, the penalty for a misdeed is the death
of the identity, irrespective of how much good work
the principal had done earlier. We hope that such
a high penalty for infraction would make principals
less likely to commit any misdeeds. Our system puts
the adage “Once a cheater, always a cheater” into
practice.

For keeping track of the misdeeds of a princi-
pal, the principal needs to sign each message that it
sends, using its identity. The signed message provides
an irrefutable evidence of the mischief committed by
the principal. Signing combined with our design re-
quirement of the evidence being independently ver-
ifiable by any other principal means that trust, or
rather, distrust is no longer subjective, or a matter

of personal preferences, in our framework. It is a
factual thing, since it is backed by concrete evidence
of misdeed, which can be verified independently by
any principal. Signing also takes care of the prob-
lem in which a trustworthy principal is unfairly im-
plicated for some other principal’s wrongdoings be-
cause a principal does not sign the content unless it
can vouch for the authenticity of the content.

4 Example Framework

In this section we sketch an example framework which
makes use of the ideas presented. We attempt to
highlight the areas where our ideas help solve a prob-
lem in new ways, but don’t concentrate on problems
with well-known solutions.

Our example is based on the ConCert project[2],
a peer-to-peer grid computing platform.

The ConCert network is made of a number of
nodes spread across the internet. Any node on the
network is allowed to offer tasks (machine code) for
other nodes to do when they are idle. Certified code
techniques such as proof-carrying code[9] are used to
ensure that the code is safe to run, without the need
for a certifying authority. This makes it impossible
for miscreants to vandalize nodes by sending out mali-
cious tasks. However, mischief makers can still cause
trouble by offering to do a task, and then returning
bogus results.2

There are a number of ways to deal with this.
One is to give out only tasks for which the answer is
easily verifiable. For instance, we can ask for factors
of a number—we can easily check to see that the an-
swer is correct. However, this restricts our range of
tasks enormously. Another way is to send tasks to
multiple parties and then compare the results. This
wastes significant resources in the case that nobody is
cheating. A third is to verify the results ourselves—
but then we might as well have just done the work
on our own in the first place.

In any case, after we detect cheating, we want
to be able to do something about it. If we are using
the system of identities described earlier, then we are
able to blacklist this user, and they will not be able
to trick us again without expending a lot of resources
to generate a new identity. If we are using a trust
propagation system based on evidence, then we can

2The situation is much worse if there is an economic reward
for completing tasks!

4

alert the rest of the network of the user’s misbehavior
so that he’ll have difficulty tricking anyone else, too.

Following is a sketch of how the system could use
our ideas to make cheating much more difficult.

4.1 The Network

To begin, imagine a peer-to-peer network similar
to Gnutella[5]. Nodes discover each other through
broadcast ping messages and do “searches” for tasks
to run. However, all messages are signed and accom-
panied by identifying tokens in order to enable our
new features.

4.2 Nodes

Each node on the network has its own key that it
generated before joining.

In addition, it maintains a blacklist of keys that
it does not trust. With each key, it may optionally
store evidence implicating the identity. These keys
are stored in a hash table or other dictionary struc-
ture for fast lookup.

4.3 Detecting Cheating

We can use any of the methods above to detect
cheating. Unless verification is essentially free (be-
cause correct answers are self-evident), nodes should
do probabilistic verification, that is, check one out
of every n answers at random. The probability of
checking an answer depends on many factors, such as
the importance of the job, the expected prevalence of
cheaters, and the difficulty in checking results.

4.4 Evidence

The most obvious form of evidence is an incorrect
result for a task. This consists of a piece of code
and the purported result, signed by the identity in
question.

Since verifying such evidence can be somewhat
expensive (it requires re-running the task), one pos-
sible attack would be to flood the network with
bogus “evidence” of cheating. Therefore, we want
even an assertion that someone is cheating to be
signed, as in, “I, Tom, certify that the program
0A4CB3. . . terminated in 91044 cycles and resulted

in the answer 0380295. . . . However, Amit certified
the following: . . . ”. Now, if someone receives this
evidence and doesn’t already know something about
Tom or Amit, then by running the included code he
can be assured of discovering that either Tom or Amit
is lying. So, if Tom tries to flood the network with
bogus evidence, then he will quickly be ignored him-
self.

Other kinds of evidence include task offers with
broken certificates, and malformed packets.

4.5 Key Exchange

Establishing a connection consists of an exchange of
nonces, as follows.

A → B saltA, publicA, nonceA

B → A saltB, publicB ,
nonceB, signB(nonceA)

A → B signA(nonceB)

The purpose of this handshake is to make it diffi-
cult for users without good identities to join the net-
work. If A or B appears on the other’s blacklist, or if
their key strengths are inadequate, then the connec-
tion will be aborted. Since the nonces are generated
randomly, an attacker C will not be able to simply
replay old handshakes. Of course, it would be simple
for C to secretly intermediate between A and B and
eavesdrop, but this is acceptable because we are not
attempting to provide secrecy. C cannot modify or
forge any messages after the handshake because they
will be signed by A and B; he will simply act as an
invisible extra hop between them.

4.6 Requesting a Task

An idle node A can send out a request for work, which
will be broadcast with a limited TTL. A node B re-
ceiving this message that has work to spare can re-
spond by connecting to A and offering it a task. If
B is in the idle node’s blacklist, it should certainly
refuse. Furthermore, the fact that the idle node re-
ceived a response from B means that they are close
in the network and that B is connected to some node
that doesn’t know he is a cheater.3 Therefore, it
makes sense for A to broadcast his evidence of B’s
misbehavior to his local neighborhood.

3Or connected to a node that is passively assisting it by
ignoring evidence. See the section on future work for details.

5

4.7 Propagating Evidence

In fact, there are several circumstances in which we
send out evidence. When we first discover that a
node has reported a wrong answer, or provided false
evidence (or committed some other infraction), we as-
sume that it has just “gone maverick” and we want to
alert others as soon as possible to minimize the dam-
age it can do. Therefore, we flood the network with
our new evidence. In order to avoid a huge amount
of flooding of evidence in the case that a rogue node
tries to trick many other nodes simultaneously, a node
should not forward an evidence flood if it has received
evidence about the same identity within some short
period of time.

In a real peer-to-peer system, the network topol-
ogy is always changing, with new users being added
and old users leaving. Therefore, telling the network
about fraud once will not be enough.

If we notice a message pass through us that came
from a blacklisted node or includes a blacklisted node
in its source route, then as above we assume the
node must be nearby and we send out a TTL-limited
broadcast with evidence implicating that node.

Finally, when we first join the network, we should
broadcast some random subset of our blacklist evi-
dence. This is to prevent evidence from being “for-
gotten” by the network because there was never any
occasion to share it (the identity never attempted to
connect to the network). The amount that we broad-
cast would depend on this attrition rate and how
much we desire to retain possibly obsolete evidence.

Though this appears to be a lot of broadcast-
ing, remember that the amount of evidence around
is limited by the number of identities generated, and
we have made identity generation difficult. To gen-
erate a single flood of the network, a vandal must
spend several CPU-hours to make an acceptable key.
In this light, the flooding of evidence seems insignifi-
cant even compared to the broadcast PING messages
common in peer-to-peer protocols!

5 Other Applications

In general, our idea of identity generation is applica-
ble whenever there is a desire for users on a network
to identify other users, and a guarantee of uniqueness
is not necessary. (For instance, it would not be appro-
priate for an electronic voting system.) Our notion of

trust can be applied whenever there is an appropriate
system of “evidence”, for instance in a network where
there are queries and results that can be objectively
verified. Many existing peer-to-peer systems fit both
of these criteria:

5.1 Caching Hierarchies

The benefits of a cache hierarchy have been well
studied[3]. Having a caching hierarchy essentially in-
creases the effective user population and therefore, a
caching hierarchy has a higher hit rate than a single
stand-alone cache. When the caches in the hierarchy
are close enough, this can result in substantial re-
duction in end-user latency and sizeable bandwidth
savings to the other parts of the Internet. Moreover,
all requests that are satisfied by the caches, do not
need to go to the origin server, and thus, the load on
the origin server is reduced. In spite of these benefits,
one of the main reasons for such hierarchies not being
common is the lack of trust across autonomous sys-
tems. Our framework is able to address this problem
(though it might be overkill!).

A more interesting case arises when we consider
caching by end-users as a way to deal with flash
crowds, akin to CoopNet[16]. There is a major differ-
ence from CoopNet though. End-users in our system
would query their peers first, as opposed to CoopNet,
where clients usually first go to the origin server and
are then redirected to one of the client machines. Ac-
cessing the origin server in the scenario we envision
would be necessary only to verify the authenticity of
the content.

Most of the steps to be followed in this case are
the same as detailed with regard to the ConCert
project. Thus, to participate, each cache generates a
key pair that represents its identity. Each cache also
maintains a list of blacklisted identities. To verify the
authenticity of a response, a cache can either compare
the different results for its query against each other
or the cache can simply fetch the required document
from the origin server and compare it with the re-
sponse it has obtained from its peers. 4

In a nutshell, we propose enhancing ICP or
HTCP to do a key exchange (handshake) and then
exchange signed content. Caches that interact fre-
quently with each other can maintain a persistent

4Since many web pages are not static, this may require an
extension to HTTP that allows a cache server to fetch a page
(or at least its hash) at a specific time in the past in order to
verify old evidence of lying.

6

connection, so that the connection overhead cost is
amortized.

5.2 Freenet

Our scheme is directly applicable to Freenet[15], and
highly compatible in spirit (we preserve anonymity
and use strong cryptography).

In Freenet, content hash keys (CHKs) are a way
of requesting files based on a hash of their content.
When receiving a file, we have a simple way of veri-
fying that it it’s correct: compute the hash of the file
and compare. Other keying schemes also have po-
tential for verification, such as keyword signed keys
(KSKs). Wherever verification is possible, we have
the potential to blacklist anyone who tries to pass off
incorrect versions of files. (Unfortunately, evidence
can be extremely large, since we must include the
entire signed file that they sent!)

There are of course many other issues to consider.
However, we believe that our ideas could be incorpo-
rated in such a way as to make Freenet even more
robust against attack.

5.3 File-sharing systems

Current file-sharing systems have a very weak concept
of identity. The identity of a user is her username,
and nothing stops a user from creating new identities.
Clearly, there is very little trust that is possible. Our
scheme can be applied to this system so that identities
no longer remain as fluid, and it is easy to associate
good/bad actions with a user.

The only big hindrance in our scheme being ap-
plicable to this framework is that there is no clear
mechanism for verifying the content. For example,
whether a MP3 song has a good enough quality or
not is subjective. This is indeed a tough problem,
but could be solved if there were public databases of
songs stored along with their hashes on the Internet.
This idea is similar to that mentioned in [17]—the
notion of caching trust rather than content.

Besides this, there is a small hindrance. There
might be users in a peer-to-peer system who might
just want to download stuff from the network and
would not want to bother spending their resources
in computing the required identity. This means that
such users even if they have some content cannot act
as senders for that content. One way to deal with

such a problem is to require both parties in a trans-
action, instead of just the sender, to have sufficiently
strong identities. This way all users in the network
could be made accountable for their deeds. Another
rationale for doing this is that good users would like
to help only the good users, and not a user with a
questionable track-record.

6 Related Work

Most existing literature in the area of trust inher-
ently assume the existence of a certifying authority,
and their main focus is to develop formal models for
building and propagating trust, that are computa-
tionally tractable. Since this itself is a hard problem,
researchers have not looked on to the next logical
step i.e., modeling trust without the assumption of
an oracle to vouch for the conduct of all principals.

Marsh [7], was probably the first to formalize the
concept of trust as a computational concept. His
model tried to incorporate the varied aspects of trust,
as detailed in the huge amounts of literature on trust
in economics, philosophy, psychology and sociology.
The resulting model was therefore fairly complex as it
included many aspects of social trust, and depended
on many variables that represented abstract notions
such as ’risk’, ’competence’, ’possible gains by coop-
eration’ and the ’importance of the task to the agent’.
In his other work[8], Marsh also compares the opti-
mistic, pessimistic and realistic model of trusts and
concludes that a model of trust based on realism is
better than being uniformly and naively optimistic or
pessimistic about everyone else.

Abdul-Rahman[12] et al. discuss the idea of sup-
porting trust in virtual communities and develop a
trust model, in which trust propagates in a fashion
akin to the real world, i.e., through word-of-mouth.
They have recommenders in the system, and an agent
may decide how much it trusts a recommender and
the suggestions given by the recommender about an
agent.

The focus of the above works is completely or-
thogonal to what we propose in this paper. They
focus on how to model and propagate trust, in the
presence of an all powerful central authority, where as
we present an alternative to having a central author-
ity, and show how not having a central authority does
not diminish in any way, our ability to model trust.
Thus, most of their models for trust and trust propa-
gation are easily applicable to our framework. There

7

is one difference though. They have even considered
subjective trust, which is not true in our case because
of the requirement that all messages be signed. Thus,
trust propagation in our scenario becomes very easy,
because a principal can present concrete evidence of
an identity’s unworthiness.

Hopper et al. [10] detail a service discovery and
delivery system, in which clients can receive guar-
anteed delivery of multimedia content from a con-
tent provider, in return for payment. Clients in
their setting do not actually care about which con-
tent provider is providing the service. To ensure that
neither the client nor the content provider can cheat,
they have a concept of verifier which is trusted by all
parties of the system.

Meyers et al. [11] talk about security in a system,
in which a publisher-centric cache executes code on
behalf of an origin server. Their system is based on
a certifying authority, using which all the publishers
and caches are hierarchically certified. Publishers can
ship out code, that can then be executed at one of
the caches authorized by the publisher. In addition,
to check whether the cache is behaving correctly or
not, a client can probabilistically verify the output it
received from a cache with the origin server.

Both of the above works end up using the con-
cept of a central authority, and so, they do not need
to have identities that are computationally difficult
to generate. We can model both the above works in
our framework, and make them to work without us-
ing the concept of a central authority. Apart from
this, both the projects mentioned above use signing
of messages to catch miscreants and use the idea of
probabilistic verification to reduce the system over-
head. We use both these techniques in our system
for essentially the same purposes. Thus, our idea
of having a computationally intensive identity, that
evolves with time, is what separates our work from
both the above mentioned works.

Reference [6] sketches a system, called Hash
Cash, for “charging” for email delivery by requiring
senders to compute partial collisions for hash func-
tions. This idea of auditable metering (a checkable
certificate of some amount of work done) was also
seen in [13] and [14].

These papers all use auditable metering for one-
time use, essentially slowing down a system from gen-
erating requests to a service extremely quickly. Our
system is the first to generate a single token that is
re-used, and to equate this token with the idea of an

identity.

7 Future Work

Certain kinds of malicious behavior are not easy to
provide evidence for, even if they are easy to detect.
It would be interesting to design a system where more
types of misbehavior could be captured.

For instance, assume we were able to synchronize
a clock across the entire network. Then, suppose we
require that all broadcast packets contain a times-
tamp, and that any packet with a timestamp out-
side the normal error range for the clock be dropped.
Now, we can provide evidence for a user who rapidly
floods the network with broadcast traffic: a collection
of packets with close-together timestamps.

Another way that nodes can misbehave in our
current system without being penalized is to passively
assist blacklisted nodes. For instance, suppose that
C is on A’s blacklist, but is connected to the net-
work through B. A can present B with evidence of
C’s wrongdoing, but B has no obligation to pay any
attention to it; he can continue to forward on C’s
messages. Though A can place B in his personal
blacklist, he has no way of formulating irrefutable
evidence that B is assisting C. It’s hard to imagine
a system with un-ignorable evidence, but it might be
possible.

There is significant overhead associated with
signing each message and including a key and salt
along with it. Though the overhead is “just” a
constant factor, investigating ways of reducing it
(perhaps by caching the keys and transmitting only
hashes of them) would probably make our scheme
more practical.

8 Conclusion

We have proposed a new system for generating identi-
ties whose strength can be easily independently veri-
fied. Armed with these identities, we have proposed a
simple system of trust based on irrefutable evidence,
and given an example of how such a system could
be used to solve the problem of forged results in a
peer-to-peer grid computing application. In doing
so, we retain the essential peer-to-peer properties of
anonymity and decentralization. We have also sug-
gested several other applications where our ideas may

8

prove useful.

9 Bibliography

References

[1] KaZaA and Morpheus, http://www.fasttrack.nu/

[2] Harper et al., http://www.cs.cmu.edu/˜concert/
papers/proposal/proposal.pdf

[3] Wolman et al., On the scale and performance of
cooperative Web Proxy Caching

[4] Schneier, Applied Cryptography, second edition.

[5] http://www.gnutella.com/

[6] http://www.cypherspace.org/˜adam/hashcash/

[7] Marsh, Formalizing Trust as a Computational
Concept, Ph.D. thesis, Department of Computing
Science and Mathematics, University of Stirling

[8] Marsh, Optimism and Pessimism in Trust, Tech-
nical Report CSM-117.

[9] Necula, Lee et al., Safe, Untrusted Agents using
Proof-Carrying Code.

[10] Hopper et al., Trusted Service Discovery and De-
livery, 15-744 Course Project.

[11] Myers et al., A Secure Publisher-Centric Web
Caching Infrastructure, published in IEEE Info-
com ’01.

[12] Abdul-Rahman et al., Supporting Trust in Vir-
tual Communities, In Proceedings Hawaii Inter-
national Conference on System Sciences 33, Maui,
Hawaii, 4-7 January 2000.

[13] http://www.wisdom.weizmann.ac.il/˜naor/ on-
pub.html - Pricing via Processing - Proceedings
of Crypto 92 - Cynthia Dwork and Moni Naor

[14] http://www.cs.huji.ac.il/˜dalia/pubs.html - Au-
ditable Metering with Lightweight Security, Fi-
nancial Cryptography 97, Dahlia Malkhi and
Matt Franklin

[15] Clarke et al., Freenet: A Distributed Anonymous
Information Storage and Retrieval System.

[16] Padmanabhan et al., The Case for Cooperative
Networking, published in IPTPS ’02.

[17] Satyanarayanan, Caching Trust Rather Than
Content, Operating Systems Review, Volume 34,
No. 4, October 2000.

10 Appendix: Analysis of Salt

Let us first describe the problem more formally. Sup-
pose a principal P has tried n salts, and in its in-
teraction with Q, suppose it decides to send its best
k salts (such that it does not happen that a salt of
a particular strength is sent but another salt of the
same strength is left out). Based on the strength of
the k salts that it receives, Q expects that P would
have carried out m hashes. The question we want to
ask is how does the relation between m and n vary
with increasing k, in the worst case? By worst case,
we mean that for a given k, what is the largest n
possible?

The derivation here is based on the idea of expec-
tations. Let P (i) denote the probability that a salt is
of strength at least i, let S(i) denote their collection
and let PN(i) be the corresponding number of salts.
Let QN(i) denote the number of salts with strength
exactly i. Thus, QN(i)=PN(i) - PN(i + 1). P (i)
is equal to 1

2i . Clearly, S(i + 1) ⊂ S(i). We are in-
terested in finding PN(0) based on the information
about the higher order nodes in our system.

Let each salt that is tried in our system be repre-
sented as a S(0) node (since all salts have strength at
least 0). The tree is then built recursively - if there
are two S(i) nodes that are free (by free we mean that
they have no parent), they join together and cease to
be free to form a S(i + 1) node, unless for each i at
most one S(i) can be free. The rationale behind hav-
ing two S(i) join together to form one S(i+1) is that
P (i+1) is exactly equal to one-half P (i). Intuitively,
for every two distinct S(i) nodes that we find, one of
them is expected to belong to S(i + 1).

Let c be the highest number for which S(c) 6=
φ. Therefore, PN(c) = 1. If we just send the sole
element of S(c), it conveys the fact that the principal
has tried at least 2c salts, whereas the actual number
of salts tried could be anywhere from 2c to 2(c+1)−1,
thus, implying an error probability of 1

2 . It is also
worth noting that sending elements of S(c) gives us
no indication as to what the elements of S(c − 1)
are. If we decide to send lower elements from the set
S(c − i), then we need to send at least 2i elements
from set S(c−i), to just cover the work represented by
one element of S(c). Thus, if we send all the elements

9

of S(c − i), m = NP (c − i) ∗ 2(c−i), where as the
actual number of salts could be anywhere between
NP (c − i) ∗ 2(c−i) to NP (c − i) ∗ 2(c−i) + 2(c−i) − 1.
Since NP (c − i) would be at least 2i, thus the error
probability is at most 2i

2i+1 . Thus, m
n ≤ k

k+1 , if we
send just all nodes at a level.

√

10

