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Abstract

This is a proposal for an extension to the Standard ML programming language to support separate
compilation. The extension allows the programmer to write a program broken into multiple frag-
ments in a way that would be compatible between different implementations. It also allows for the
separate compilation of these fragments, for incremental recompilation strategies such as cut-off
recompilation, and for a range of implementation strategies including whole-program compilation.
The semantics of separate compilation is defined independent of the underlying semantic framework
for Standard ML and is realized in two forms corresponding to The Definition of Standard ML and
The Typed Semantics of Standard ML.
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1 Introduction

We propose an extension of Standard ML (SML) to support separate compilation. A separately
compiled program fragment, called a unit, consists of a series of top-level declarations. A unit
is described by an interface, which is a series of top-level specifications giving the types of the
components of that unit. A unit or interface may make reference to the components of another
unit by opening the referenced unit for its use, referring to these components by name. Unit
references are definite—that is, they refer to specific units rather than abstract arguments—so no
sharing specifications are induced by separate compilation [HP05].

An assembly is an independently meaningful, yet possibly incomplete, collection of units and
interfaces; see Figure 1 for an example. In order to be independently meaningful, an assembly
specifies an interface for any externally defined unit to which it refers, and, as a result, it may be
compiled independently of them. A unit declaration within an assembly may or may not specify
an interface for that unit. If one is specified, the compiled unit is coerced, by a process analogous
to signature matching, to the specified interface, which governs all uses of that unit identifier. If
no interface is specified, the inferred interface obtained by compiling that unit is used for that unit
identifier.1 By confining attention to a single assembly with no external references, we may support
integrated compilation of source code, but we expect that libraries will be organized as assemblies
that are compiled separately from and linked against the applications that use them.

A link script specifies how to coalesce a series of assemblies into a single assembly, resolving
external references in the process. An assembly is complete, and therefore eligible to be turned into
an executable, when all external references have been resolved. The linker insists that all external
references to a given assembly be governed by the same interface, up to a natural extension of
signature equivalence to interfaces. The assembly in Figure 1 is incomplete; it can be completed
by linking it with an an assembly providing an implementation of the unit Q with interface QUEUE.

The order of assemblies in a link script is significant; any effects incurred by execution of an
assembly occur in the order specified. In particular, there is no conventional “main” entry point,
but rather execution begins with the first unit in the completed assembly. A link script may select a
subset of the units in an assembly to be retained, along with those units on which they depend. The
effects of any omitted units are likewise omitted from the resulting executable. This mode of usage
is common for building application code; for libraries it is more typical to include all units in an
assembly, regardless of whether they appear to be necessary according to the visible dependencies
among them.

An example, illustrating the linking of a few simple assemblies, is given in Figure 2. The labels
on the dashed arrows constitute the link script, which determines the order in which linking occurs.
In this example the effects of unit B precede those of unit D because of their order of occurrence in
assembly 2. Similarly, the effects of unit C precede both of those in assembly 5 because assembly 1
precedes assembly 2 in the link script.

1.1 Key Elements

We give a rigorous semantics of the proposed separate compilation facility in a form that is largely
independent of the underlying semantic framework for Standard ML itself. This is achieved by
giving the semantics in terms of a collection of stubs that provide a narrow, well-specified portal

1Inferred interfaces cannot always be written as source interfaces. For example, an interface can be inferred for the
declaration local datatype t = A in val x = A end but there is no source signature or interface that accurately
describes it.
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interface QUEUE = open (* no opens *) in
structure Queue :
sig

type ’a queue
val empty : ’a queue
val push : ’a * ’a queue -> ’a queue

end
end

unit Q : QUEUE

unit C = open Q in
val q = Queue.empty
val q’ = Queue.push (0, q)

end

Figure 1: A simple assembly. The interface QUEUE describes units that declare a structure Queue.
The assembly requires unit Q to have interface QUEUE but does not specify an implementation. The
interface supplied for unit Q is sufficient to compile unit C: The top-level declaration in unit C is
compiled in a context binding a single structure Queue.

Figure 2: An example program being linked. The letters are unit names. Filled boxes correspond
to unit implementations and lines from a filled box up to other boxes indicate opened units. In the
first step, three assemblies are separately developed and the constituent units separately compiled.
We can partially link assemblies 2 and 3 to give us a fourth assembly. This assembly still has
unimplemented units, so it cannot be made into an executable yet. Linking it with assembly 1,
however, resolves all of these dependencies and so an executable can be produced.
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Figure 3: Organization of the technical material in this proposal. Link scripts and source units, in-
terfaces, and assemblies are given meaning via translation into the internal language. The relations
and the IL employ stubs that are realized for TD and TS.

to the underlying semantics. These stubs are separately realized in two forms, one corresponding
to The Definition of Standard ML [MTHM97], which we will abbreviate by TD, the other corre-
sponding to the Typed Semantics of Standard ML [HS00], which we will abbreviate by TS. This
organization permits us to provide an interpretation of separate compilation in terms of either well-
known semantic framework, and also suggests an implementation strategy that is compatible with
all known compiler architectures for Standard ML. The semantics specifies when one unit depends
on another, when an assembly is complete, and hence may be used to build an executable, and the
order of side effects. This provides a clear criterion for the correctness of an implementation, and
for the compatibility of different implementations.

The semantics of separate compilation is given in terms of three languages and various rela-
tions among them. The internal language (IL), is a language of “compiled” units, interfaces and
assemblies. IL stubs provide the syntax and static semantics for elementary compiled units and
interfaces, based on the underlying semantic framework. The external language (EL) is the source
language of units, interfaces and assemblies. Its syntax builds on SML and its meaning is specified
by an elaboration translation into the IL. Elaboration stubs translate elementary SML source code
to compiled units and interfaces, again based on the underlying semantics. The linking language
(LL) builds on the IL and is given meaning via a linking translation into the IL. Linking stubs
specify when an elementary compiled unit or interface makes reference to another unit. A comple-
tion stub translates a fully linked, compiled assembly to a program, which has a dynamic semantics
specifying its execution. Figure 3 summarizes the situation.

This organization avoids commitment to specific interpretations of “elaboration” or “comple-
tion” so as to ensure compatibility with various semantic and implementation strategies. For
example, a whole-program compiler might define elaboration to perform only type checking, defer-
ring code generation to the completion phase. Alternatively, standard separate compilation may
be performed by specifying elaboration to include code generation, and completion to include only
resolution of external references.
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1.2 Rationale

Several major design principles informed the development of this proposal:

A language, not a tool. We propose an extension to the Standard ML language to support
separate compilation, rather than a tool to implement it. The extension is defined by a semantics
that extends the semantics of SML to provide a declarative description of the meanings of the
language constructs. The semantics provides a clear correctness criterion for implementations to
ensure source-level compatibility among them.

Flexibility. A compilation unit consists of any sequence of top-level bindings, including signature
and functor declarations.2 However, since Standard ML lacks syntactically expressible signatures,
some units cannot be separately compiled from one another, and must therefore be considered
together in a single assembly.

Simplicity. The design provides only the minimum functionality of a separate compilation sys-
tem. It omits any form of compilation parameters, conditional compilation directives, or compiler
directives. We leave for future work the specification of such machinery.3

Conservativity. The semantics of Standard ML should not be changed by the introduction of
separate compilation. In particular, we do not permit “circular dependencies” or similar concepts
that are not otherwise expressible in the language. This ensures that existing compilers should not
be disturbed by the proposed extension beyond what is required to implement the extension itself.

Explicit dependencies. The dependencies among units and assemblies is explicitly specified,
not inferred. The chief reason for this is that dependencies among units may not be syntactically
evident—for example, the side effects of one unit may influence the behavior of another. Moreover,
there are, in general, many ways to order effects consistently with observed dependencies, and these
orderings need not be equivalent. A lesser reason is that supporting dependency inference requires
restrictions on compilation units that are not semantically necessary, reducing flexibility.

No added sharing. Unit references are definite; unit names have global scope and cannot be
shadowed. This ensures that the use of separate compilation does not induce the need for any
additional sharing specifications.

Environment independence. The separate compilation system is defined independently of any
environment in which it might be implemented. The design speaks in terms of linguistic and
semantic entities, rather than implementation-specific concepts such as files or directories.

The remainder of this proposal is organized as follows. In Section 2 we describe the extension’s
implementation in the TILT compiler, presenting a concrete syntax and command-line interface
for separate compilation. We discuss the implementation first in order that the development of
the formalism that follows can be grounded in concrete intuitions. In Section 3 we give the syntax
and semantics of the extension, in a form independent of the underlying semantic framework. In

2Consequently, units cannot be identified with structures in the sense of the Standard ML module system.
3The TILT compiler includes such facilities, and might serve as a basis for a future extension of the proposal.
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unit A sequence of SML top-level declarations with
free identifiers resolved by reference to a list
of opened units.

interface The type of a unit: A sequence of top-level
specifications with free identifiers resolved by
reference to a list of opened units.

assembly An independently meaningful sequence of unit
and interface declarations. An assembly must
specify an interface for any externally defined
unit to which it refers.

link script Description of how to link a sequence of as-
semblies to form another.

external language The language of source assemblies, units, and
interfaces.

linking language The language of link scripts.
internal language The language of compiled assemblies, units,

and interfaces. It serves as the target language
of elaboration and linking.

elaboration Type-checking and transformation from ex-
ternal to internal form.

linking Creation of an assembly from a sequence of
assemblies.

completion Creation of an executable from an assembly
with no external references.

Figure 4: Glossary of main concepts

Section 4 we realize the semantics for TS, and in Section 5 we do the same for TD. In Section 6 we
review related work.

For handy reference, a glossary of the main concepts used in this proposal is given in Figure 4.

2 Implementation in TILT

In this section, we discuss the separate compilation language implemented by the TILT compiler
for Standard ML [TIL]. Except for minor differences and extensions, TILT implements separate
compilation as described by the TS realization of the semantics (Sections 3 and 4).

Most of this proposal concerns the abstract syntax and semantics of separate compilation.
A concrete syntax is necessary, too, but we leave a rigorous treatment to future work. For the
sake of discussion, we give in Figures 5 and 6 a concrete syntax based on that used in TILT.
Optional elements are enclosed in single angle brackets. The nonterminals filename, msg , and test
correspond to a small language of strings, integers, and booleans. Expressions in this language can
access compiler parameters and environment variables. (Assembly and interface files are lexically
similar to SML.)

Assembly Files. A concrete assembly, or assembly file, declares a list of units and interfaces.
Top-level declarations—SML source code—and specificiations must be in their own files. The
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assembly ::= empty
assembly assmdec

assmdec ::= interface intid = intexp interface definition
unit unitid : intexp unit description
unit unitid 〈: intexp〉 = source unit definition
include filename
#if test assembly 〈cc〉 #endif conditional
#error msg abort

intexp ::= intid
source

source ::= filename 〈{ unitids }〉
unitids ::= empty

unitids unitid
cc ::= #else assembly

#elif test assembly 〈cc〉

Figure 5: Concrete syntax of assembly files

unitfile ::= topdec top-level declaration
interfacefile := topspec top-level specification

topspec ::= spec basic
functor funspec functor
signature sigbind signature
infix 〈d〉 vids fixity
infixr 〈d〉 vids
nonfix vids
topspec1 〈; 〉 topspec2 sequence

funspec ::= funid(strid : sigexp) : sigexp ′

funid(spec) : sigexp
funspec and funspec

vids ::= vid 〈vids〉

Figure 6: Concrete syntax of unit and interface files
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contents of a named file and a list of opened units written in curly braces constitute a concrete unit
or interface. The opened units may be omitted as a short-hand for opening every unit declared
to that point in the assembly file, in the order they appear. To open no units, an explicit {} is
required.

TILT permits an assembly to be split into one or more assembly files and supports conditional
compilation at the level of unit and interface declarations. Assembly files may include other as-
sembly files and the programmer may specify a list of assembly files on the command-line. TILT
avoids including the same file more than once by syntactically interpreting relative paths and com-
paring the resulting file names. This is used to detect “include cycles” and to permit two included
assembly files to include a third.

The assembly file parser in TILT produces an assembly in the (much simpler) EL abstract
syntax.4 In translating from concrete to abstract syntax, the parser eliminates conditional com-
pilation, incorporates included assembly files, and so on. A concrete assembly is, of course, an
assembly. It must be independently meaningful, specifying an interface for any externally defined
unit to which it refers, and may have at most one declaration for each unit or interface identifier.
Thus, the parser must combine concrete assemblies similar to how the linker of Section 3.4 combines
compiled assemblies.5 The chief difference is that the parser can not check interface equivalence,
which can only be judged after elaboration. It considers two concrete interfaces equivalent if they
are identical (same file contents and lists of opened units). This is a conservative approximation of
semantic interface equivalence. A reasonable alternative would be for the parser to residuate a list
of interface equivalence constraints that must be checked during compilation.

TILT can not generate SML source files using tools like ml-yacc and ml-lex or shell recipes.
Such support could be added to the assembly file parser with little difficulty.

Fixity. TILT interface files may contain fixity declarations. In this proposal, we do not formalize
parsing SML concrete syntax to abstract syntax, so we do not give a semantics to fixity declarations.
However, we note that our intention is to permit a program to be split into units between any two
top-level declarations and for interfaces ascribed to those units to mediate interactions among them.
This essentially forces the following treatment of fixity declarations.

Concrete interfaces may include fixity declarations so that they can describe concrete units.
IL interfaces must include fixity information so that interface ascription (defined in terms of IL
interfaces) can check that a unit provides at least the fixity information in its ascribed interface.
Fixity declarations influence IL interface equivalence and sub-interface relations. Finally, the fixity
information in any interface must be activated when opening a unit so that parsing of its dependents
is performed in a manner consistent with integrated compilation.

Command-Line. Link scripts are implicit in the TILT command-line. There are three ways to
invoke TILT:

• tilt assembly parses the assembly file assembly and compiles the resulting EL assembly to
an IL assembly.

• tilt -o exe assembly compiles assembly and completes the result to an executable exe.
4Please see Section 3.1 for a discussion of the abstract syntax.
5A common scenario is for assembly file L1 to implement the units in a library, for assembly file L2 to implement

a second library and to describe those units from L1 needed for its implementation, and for assembly file A to include
both L1 and L2. Parsing A must produce an assembly that declares the units in L1 once.
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• tilt -l lib assembly compiles assembly and puts the resulting IL assembly in a directory
lib along with assembly files that describe it.

By default, TILT does not use selective linking. This can be changed with a command-line option.
For example, the command

tilt -c Main -o exe assembly

specifies that exe should contain only unit Main and any units that it needs.
Having TILT copy an IL assembly into a directory lib is entirely optional. The benefit of doing

so is that TILT writes assembly files to provide two views of the units in lib. The first declares all
of the units with their implementations. The second declares all of the units but does not specify
any implementations. A third assembly file uses the conditional compilation mechanism to include
the first or the second depending on whether or not the compiler is completing an executable. By
convention, an assembly that needs the units in lib includes this third file. From the point of view
of the including assembly, lib consists of an up-to-date collection of separately compiled units.
When the including assembly is completed, the implementations of these units is obtained from
lib. When the including assembly is copied to its own libdir, the copy contains descriptions of the
units in lib but not their implementations. (TILT uses this mechanism to make its implementation
of the Standard Basis Library available to every assembly file.)

Standard Basis Library. The Standard Basis library is automatically included as part of every
assembly file. Moreover, each interface and unit implicitly opens those units that provide the
standard top-level environment. All structures and functors in the Standard Basis are defined in
units of the same name as the structure or functor. Most signatures defined in the Standard Basis
are defined in units of the same name as the signature, with the exception of the signatures IO, OS,
and SML90, which reside in units named IO SIG, OS SIG, and SML90 SIG, respectively.

Compilation. TILT supports parallel compilation, where several machines work together to com-
pile the interfaces and units in a single assembly. A unit or interface is ready for compilation as
soon as the IL interfaces of its opened units are up-to-date. Since interface ascription is coercive,
the dependents of a unit with an ascribed interface do not have to wait for the unit to be compiled.
Less important, the dependents of a large unit with an inferred interface can be compiled once the
unit is elaborated (and its IL interface is written to disk). They do not have to wait for the unit
to be fully compiled to an object file. The semantics of separate compilation should enable us to
state and check the correctness of parallel compilation as well as, with a little more work, the use
of cut-off incremental recompilation [ATW94] in TILT.

Examples. We give examples of the concrete syntax in Figures 7 and 8. (The assembly file
echo.assm makes use of declarations in the implicitly included Basis Library.)

3 Syntax and Semantics

In this section we define the internal, external, and linking languages used to give the semantics
of separate compilation. The meta-theory of the semantics and its realization to TD and TS is
relegated to Appendix F.
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(* echo.sml *)
fun echo (ss:string list) : unit =

(case ss of
nil => ()

| s::nil => print s
| s::ss => (print s; print " "; echo ss))

val () =
(case (CommandLine.arguments()) of

"-n" :: args => echo args
| args => (echo args; print "\n"))

val () = OS.Process.exit OS.Process.success
(* echo.assm *)
unit Echo = "echo.sml" { CommandLine OS }

Figure 7: An implementation of the Unix echo command. The command tilt -o echo.exe -c
Echo echo.assm creates an executable.
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(* queue-sig.sml *)
signature QUEUE =
sig
type ’a queue
val empty : ’a queue
val push : ’a * ’a queue -> ’a queue
end

(* queue.sml *)
structure Queue :> QUEUE =
struct
type ’a queue = ’a list
val empty = nil
val push = op ::
end

(* queue.int *)
structure Queue : QUEUE

(* main.sml *)
val q = Queue.empty
val q’ = Queue.push (0, q)

(* lib.assm *)
interface QSIG = "queue-sig.sml"
unit QSIG : QSIG = "queue-sig.sml"
interface QUEUE = "queue.int" { QSIG }
unit Q : QUEUE = "queue.sml" { QSIG }

(* client.assm *)
interface QSIG = "queue-sig.sml"
unit QSIG : QSIG
interface QUEUE = "queue.int" { QSIG }
unit Q : QUEUE
unit C = "main.sml" { Q }

Figure 8: Simple assemblies. The command tilt client.assm compiles the client, tilt lib.assm
compiles the library separately from the client, and tilt -o queue.exe lib.assm client.assm
links the compiled assemblies together and completes them to an executable. (The order of assem-
blies on the command-line corresponds to the order of IL assemblies in the implicit link script. The
link would fail if the client preceded the library.)
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assembly ::= ·
assembly , intid = intexp interface definition
assembly , unitid : intexp unit description
assembly , unitid 〈: intexp〉 = unitexp unit definition

unitexp ::= open unitids in topdec
intexp ::= open unitids in topspec

intid
topspec ::= spec basic

functor funspec functor
signature sigbind signature
topspec1 topspec2

funspec ::= funid(strid : sigexp) : sigexp ′ 〈and funspec〉
unitids ::= unitid1 · · · unitidn

Figure 9: Abstract syntax of the external language

3.1 External Language

The abstract syntax of the EL is given in Figure 9. The syntactic categories topdec, spec, sigbind ,
funid , strid , and sigexp are inherited from TDEL.6 The syntactic categories unitid (unit identifiers)
and intid (interface identifiers) are presumed to be disjoint from each other and from all other
identifier classes. We require that no topspec or funspec may specify the same identifier twice. (We
give meaning to the EL through elaboration to the IL in Section 3.3.)

Two possibly surprising aspects of the EL are that units and interfaces do not stand alone but
are declared in assemblies and that within assemblies, unit and interface identifiers do not obey the
usual rules of lexical scoping.

Units and interfaces have no meaning independent of an assembly: They contain free identifiers
and can not be compiled in isolation. A unit or interface may make reference to another unit,
opening it by name and obtaining its interface from the ambient assembly. In addition, the interface
for a unit may make reference to an abstract type defined in another unit. To do away with
assemblies, it seems necessary for each unit or interface to describe its entire compilation context,
comprising an interface for each opened unit and, transitively, for any units whose abstract types
are referenced. This approach would place a tremendous annotation burden on the programmer.

To properly resolve external references, the linker must know when two occurrences of a unit
name refer to the same unit. In the proposed extension, unit names have global scope and cannot
be shadowed so every reference to a unit named unitid refers to the same unit. (For consistency, EL
interface names cannot be shadowed.) If unit names could be shadowed, or if two assemblies using
the same name to refer to different units could be linked together, then unit references would be
indefinite: A reference to a unit named unitid would refer to some unit with that name. The linker
would need help from the programmer in matching external references to unit implementations.

3.2 Internal Language

The IL syntax is given in Figure 10. The syntactic categories assm and adecs specify lists of
elements. We adopt the following notation for these and other lists:

6The external languages of The Definition and The Typed Semantics differ. We refer to them as TDEL and TSEL
when it is necessary to distinguish between them.
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assm ::= ·
assm, unitid : intf unit description
assm, unitid : intf = unite unit definition

unite ::= 〈internal〉 require unitids in impl
adecs ::= ·

adecs, adec
adec ::= unitid : intf unit description

Figure 10: Abstract syntax of the internal language

intf compiled interface
impl compiled unit
Γ context
Γ ` intf : Intf intf is well-formed
Γ ` impl : intf impl has interface intf
Γ ` intf ≡ intf ′ : Intf interface equivalence
Γ ` intf ≤ intf ′ : Intf intf is a sub-interface of intf ′

adecs ` Γ Γ declares units in adecs
` Γ ok Γ is well-formed

Figure 11: Internal language stubs

• We denote by (·, ·) the operation of syntactic concatenation; for example, assm, assm ′.

• We sometimes use pattern matching at the left end of the list, writing adec, adecs to match
the first binding in the list.

• We usually omit the initial ·; for example, adec1, . . . , adecn.

In order to support the two different semantic frameworks for SML, a few IL syntactic categories
and judgements are stubs. These appear in Figure 11. For the syntax, the relevant stubs are the
syntactic categories for compiled units and interfaces, impl and intf .

For example, the assembly given in Figure 1 elaborates to:

basis : intf basis ,
Q : intf 1,
C : intf 2 = internal require Q in impl2,

where intf 1 is the compiled interface QUEUE, intf 2 is the compiled interface inferred for unit C, and
impl2 is the compiled unit C. (The basis unit is discussed in Section 3.3.)

Beyond the fact that source code is replaced by compiled code, the main differences between
the EL and the IL are as follows. First, the IL does not support named interfaces; instead, every
unit declaration comes explicitly with its interface. Second, units may be marked internal and
the linker will prevent them from being used to satisfy external dependencies. The elaborator
marks units with inferred interfaces internal. Third, instead of the EL open mechanism, the IL
has require. Selective linking respects the initialization dependencies of units and the and reference
dependencies of units and interfaces [HP05]. The require clause for a unit records those units that
must be retained for their effects whenever the unit is retained (initialization dependencies). The
EL does not distinguish these two dependency relations, using open for both, so the appearance of
Q in the require clause for C simply records the fact that Q is opened in the source.
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Judgement . . . Meaning . . .
adecs ` assm ok assm is well-formed

adecs ` intf : Intf intf is well-formed
adecs ` unite : intf unite has interface intf
adecs ` impl : intf impl has interface intf

adecs ` intf ≡ intf ′ : Intf interface equivalence
adecs ` intf ≤ intf ′ : Intf intf is a sub-interface of intf ′

` adecs ok adecs is well-formed

Figure 12: Internal language judgements

The judgement forms for the static semantics of the IL are given in Figure 12. Type-checking
takes place relative to an IL context, adecs, that records declared units. A context is well-formed
if no unitid is declared more than once and every intf is well-formed. An assembly, assm is well-
formed if, in addition, no unitid is used before it is declared and every impl is well-formed. (The
rules for the static semantics are given in Appendix A.)

3.3 Elaboration

Elaboration type-checks a source assembly, unit, or interface and, if it is well-typed, translates it
to compiled form. Elaboration is defined relative to the underlying semantic framework using the
stubs summarized in Figure 13. First, we need an interface for the top-level basis unit that can
be assumed by every Standard ML program. This unit defines the built-in types of the language,
and the built-in exceptions, such as Match, that are required by the underlying framework. The
elaborator ensures this unit is implicitly described in every EL assembly and opened for use in
every EL unit and interface. (It is implemented by the underlying semantics prior to evaluation.)
Second, we need a way to elaborate the source code of a unit (a unitexp) in a specified context,
generating a compiled unit and interface for it. Similarly, we need to be able to compile an EL
interface to an IL interface in a specified context. Third, to support coercive interface ascription,
we require an ascription operation that checks a compiled unit against a compiled interface and
generates a new unit satisfying that interface.

Elaboration takes place relative to an elaboration context, edecs, that records the result of
elaborating the preceding unit and interface declarations. The syntax of elaboration contexts is
defined in Figure 14, and the elaboration judgement forms are given in Figure 15. For the most part,
elaboration is a straightforward process making use of the stubs to elaborate units and interfaces.
(The rules for elaboration are given in Appendix B.)

intf basis basis interface
adecs ` open unitids in topdec  impl : intf unit elaboration
adecs ` open unitids in topspec  intf interface elaboration
Γ ` impl0 : intf 0 � intf  impl interface ascription

Figure 13: Elaborator stubs
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edecs ::= ·
edecs, adec unit description
edecs, intid : Intf = intf interface definition

Figure 14: Elaboration contexts

Judgement . . . Meaning . . .
` assembly  assm; edecs assembly elaboration
edecs ` unitexp  unite : intf unit elaboration
edecs ` intexp  intf : Intf interface elaboration

edecs ` unite0 : intf 0 � intf  unite interface ascription

edecs ` adecs adecs declares units in edecs
` edecs ok edecs is well-formed

Figure 15: Elaboration judgements

3.4 Linking and Completion

The syntax of the linking language is given in Figure 16. A link script consists of a series of
assemblies to link together and an optional selective linking directive. Selective linking retains only
those units in the linked assembly that are required by a list of target units, respecting initialization
and reference dependencies.

The linker stubs are described in Figure 17. We require a class of executable programs prog ,
and a judgement for their well-formedness. We need to query a unit or interface to see if a unit
identifier is free in it (reference dependencies). Finally, we need a way to convert an assembly with
no external dependencies (except for the basis unit) to an executable prog.

Linking is a two-step process. The first step combines the assemblies in a link script to a
single, well-formed assembly that declares all of their units. Combination takes place relative to
a combination context, cdecs, that records declared units and whether or not they are internal.
The second step selects those units in the combined assembly that are required by the link script
(discarding the rest). Selection takes place relative to a fixed dependency context, deps, comprising
the combined assembly and a list of targets. We give the syntax of combination and dependency
contexts in Figure 18 and the judgement forms for linking and completion in Figure 19. The
rules for linking presuppose that the link script is well-formed. The rules for combination examine
each unit declaration in the link script from left-to-right. The first declaration for a unit is kept
whereas subsequent declarations are checked but discarded. The rules for selection examine each
unit declaration in the combined assembly from left-to-right, discarding those that are not required.
A unit is required if it is a target of the link script; the code/interface of a required unit makes
reference to it; or it is listed in the require clause of a required unit. (The rules for linking are given
in Appendix C.)

4 TS Realization

After a brief review of The Typed Semantics of Standard ML [HS00, HS97], we realize the semantics
of separate compilation for TS (Sections 4.1–4.3) and apply the dynamic semantics of the TS internal
language to programs arising from complete assemblies (Section 4.4).
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lscript ::= combine assms link
::= from assms select unitids link selectively

assms ::= ·
assm; assms

Figure 16: Abstract syntax of the linking language

prog executable programs
` prog ok prog is well-formed
` intf requires unitid unitid is free in intf
` impl requires unitid unitid is free in impl
` assm  prog completion

Figure 17: Linker stubs

cdecs ::= ·
cdecs, unitid :〈i〉 intf unit description

deps ::= assm; unitids combined assembly and targets

Figure 18: Combination and dependency contexts

Judgement . . . Meaning . . .
` lscript  assm linking
cdecs ` assms  assm combination
adecs `deps assm  assm ′ selection
` deps requires unitid required units

` assm  prog completion (stub)
adecs ` assm complete assm is complete

cdecs ` adecs adecs declares units in cdecs

` lscript ok lscript is well-formed
adecs ` assms ok assms is well-formed
` cdecs ok cdecs is well-formed
` deps ok deps is well-formed

Figure 19: Linking judgements
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TSEL TSIL
elaboration

dynamic
semantics

static
semantics

Figure 20: Organization of The Typed Semantics of Standard ML

TS defines TSEL through elaboration into an explicitly typed λ-calculus called the TS internal
language (TSIL); the situation is summarized in Figure 20. The TSIL has a coherent static and dy-
namic semantics, is rich enough to keep the translation simple, and is small enough to be tractable.
The TSIL is divided into a core level of expressions, constructors, and kinds and a module level
of modules and signatures. Both the TSIL and the translation benefit from an emphasis on a few
primitive notions. As one example, the “type generativity” of Standard ML and such core-level
constructs as polymorphism, datatypes, and equality types are encoded as uses of the TSIL module
system. These encodings are quite natural so that while they serve to simplify the TSIL, they
do not unduly complicate elaboration. Another example is the distinction between labels (that
correspond to Standard ML identifiers) and variables (that may be alpha-varied). This distinction
admits a treatment of the scoping rules of Standard ML, including types that apparently escape
their scope, as in the local datatype example in the introduction.

The judgement forms of the TSIL static semantics are given in Figure 21 and the syntax of the
TSIL is summarized in Figure 22. (The syntax of values—expv, sbndsv, and modv—is omitted, but
note that paths—variables and projections from module variables—are values.) At the core level,
constructors classify expressions and kinds classify constructors; at the module level, signatures
classify modules. There are a number of points of interest in the sequel. First, TSIL signature
equivalence is not coercive; for example, if decs ` sdecs ≡ sdecs ′, then sdecs and sdecs ′ declare the
same components, in the same order, with the same labels, and corresponding type components are
equivalent. Second, the judgement decs ` mod : sig can be used to obtain the “selfified” signature
of a bound structure variable. For example, if var is bound to a structure with one abstract type
component, t, then the judgement

decs1, var : [t B var t : Ω], decs2 ` var : sig

holds where the t component of sig = [t B var t : Ω = var .var t] is equivalent to the bound opaque
type. Finally, the TSIL static semantics (and the TS elaborator) is non-deterministic. As one
example, the preceding judgement also holds where the t component of sig = [t B var t : Ω] is kept
abstract and is not equivalent to the bound type.

The TSIL dynamic semantics is a small-step, call-by-value operational semantics presented as
a rewriting system on states of an abstract machine [HS00, pages 350–352]. A state has the form
Σ = (∆, σ, E), where ∆ is a typing context (decs) for locations and tags, σ is a finite mapping
from locations typed in ∆ to values, and E is an evaluation context comprising an expression or
module with a single hole that is replaced by the phrase being evaluated. The dynamic semantics
is a transition relation Σ ↪→ Σ′ between states.
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Judgement . . . Meaning . . .
` decs ok decs is well-formed
decs ` dec ok dec is well-formed

decs ` bnd : dec bnd has declaration dec

decs ` knd : Kind knd is well-formed

decs ` con : knd con has kind knd

decs ` con ≡ con ′ : knd constructor equivalence at kind knd

decs ` exp : con exp has type con

decs ` sdecs ok sdecs is well-formed
decs ` sig : Sig sig is well-formed

decs ` sdecs ≤ sdecs ′ component-wise subtyping
decs ` sig ≤ sig ′ : Sig signature subtyping

decs ` sdecs ≡ sdecs ′ component-wise equivalence
decs ` sig ≡ sig ′ : Sig signature equivalence

decs ` sbnds : sdecs sbnds has declaration list sdecs
decs ` mod : sig mod has signature sig

decs ` exp ↓ con exp is valuable with type con
decs ` mod ↓ sig mod is valuable with signature sig

Figure 21: TSIL judgements
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knd ::= · · · kinds
Ω kind of types

con ::= · · · constructors
{lab1 : con1, . . .} record type
Tagged extensible sum type
con Tag exception-tag type
modv.lab module projection

exp ::= · · · expressions
{lab1 = exp1, . . .} record expression
raisecon exp raise expression
new tag[con] extend type Tagged
tag(exp, exp) injection into Tagged
mod .lab module projection

mod ::= var module variables
[sbnds] structure
λvar : sig .mod functor
mod mod ′ functor application
mod .lab structure projection
mod : sig signature ascription

sbnds ::= · structure field bindings
sbnds, sbnds

sbnd ::= lab B bnd
bnd ::= var = con constructor binding

var = exp expression binding
var = mod module binding

sig ::= [sdecs] structure signature
(var : sig) ⇀ sig ′ partial functor signature
(var : sig) → sig ′ total functor signature

sdecs ::= · structure field declarations
sdecs, sdec

sdec ::= lab B dec
decs ::= · declaration lists

decs, dec
dec ::= var : con expression variable dec.

var : sig module variable dec.
var : knd opaque type dec.
var : knd = con transparent type dec.
loc : con typed locations
tag : con typed exception tags

phrase ::= exp | mod | con phrases
class ::= con | sig | knd phrase classifiers

Figure 22: TSIL syntax (summary)
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Judgement . . . Meaning . . .
sdecs ` strdec  sbnds : sdecs ′ declaration elaboration
sdecs ` strexp  mod : sig structure expression elaboration
sdecs ` spec  sdecs ′ signature specification elaboration
sdecs ` sigexp  sig : Sig signature expression elaboration

sdecs `ctx labs  path : class lookup in sdecs
sdecs `ctx labs  path
decs; path:sig `sig labs  labs ′ : class lookup in signature
sig `sig lab  labs ′

decs `inst [sbndsv] : [sdecs ′] polymorphic instantiation

decs `sub path : sig0 � sig  mod : sig ′ coercion compilation
decs; path:sig0 `sub sdec  sbnd : sdec′

sig `wt labs := con : knd  sig ′ : Sig impose definition
sig `sh labs := labs ′ : knd  sig ′ : Sig impose sharing

Figure 23: TS elaboration judgements (summary)

The judgement forms of the TS elaborator are summarized in Figure 23. (The judgements
for elaborating core constructs are omitted.) The elaboration judgements perform type checking,
type reconstruction, and translation to the TSIL. There is no elaboration judgement for TDEL
top-level declarations because TSEL does not include them. Instead, TSEL permits functor dec-
larations within structure declarations and TS treats signature declarations as abbreviations that
are expanded prior to TS elaboration. We resolve these differences in Section 4.2. The identifier
lookup judgements address the scoping rules of Standard ML. To handle “open” structures, the
lookup rules descend into modules with starred labels (lab?). The other judgements in Figure 23
perform polymorphic instantiation, supply explicit coercions to account for Standard ML signature
matching, and replace Standard ML sharing specs and where type signature patching with IL
transparent type declarations.

4.1 Realization of the Internal Language for TS

We realize the IL syntactic stubs for TS in Figure 24. A compiled unit is a TSIL module that binds
the top-level type, expression, structure, and functor components of the unit. Signature definitions
do not appear in compiled units.

A compiled interface has the form var : [sdecs]; tdecs. The structure signature [sdecs] describes
compiled units with this interface and the top-level declarations list tdecs contains their signature
definitions. The bound variable var has scope tdecs and permits defined signatures to refer to
abstract type components in sdecs.

A free occurrence of unitid in an IL unit or interface represents a definite reference to that
unit, where · denotes a function taking unit identifiers to TSIL variables. We assume that this
function is injective, that there are countably many variables not in its range, and that when a
“fresh” variable is chosen, the choice does not lie in its range. (The same overbar notation is used
to represent a function taking TSEL identifiers to TSIL labels; no confusion can result because
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impl := mod module
intf ::= var : [sdecs]; tdecs signature for unit

and its top-level declarations
tdecs ::= ·

tdecs, tdec
tdec ::= sigid : Sig = sig

Γ ::= decs declarations

Figure 24: Realization of IL syntax for TS

Judgement . . . Meaning . . .
decs ` tdecs ok tdecs is well-formed
decs ` tdecs ≡ tdecs ′ tdecs equivalence
decs ` tdecs ⊃ tdecs ′ tdecs inclusion

Figure 25: Judgements of the IL realization for TS

labels and variables are kept separate in the syntax.)
For example, the source interface

open (* empty *) in
type t

signature S =
sig

type s = t
end

end

corresponds to the compiled interface

var : [t B var t : Ω];
S : Sig = [s B vars : Ω = var .var t].

A compiled unit A with this interface defines exactly one (type) component. The source interface
open A in structure X : S end uses the signature definition and a definite reference to this type
component. The corresponding compiled interface is

var ′ : [X B varX : [s B vars : Ω = A.var t]];
·.

We realize the IL judgemental stubs for TS in Appendix D.1 using the auxiliary judgement
forms given in Figure 25. (The stub ` Γ ok is realized by the TS judgement ` decs ok.) The rules
build on the TSIL static semantics to type-check the IL.

4.2 Realization of the Elaborator for TS

The TSEL permits higher-order functors but not signature definitions. We change the TSEL and
elaborator for compatibility with the TDEL:

• Remove functor funbind from the syntax of TSEL structure declarations [HS97, page 34] and
TS rule 205 for elaborating them.
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• Remove functor funid(strid : sigexp) : sigexp ′ from the syntax of TSEL structure specifications
and TS rule 224 for elaborating them.

• Extend TS elaboration contexts from structure declaration lists (sdecs) to unit declaration
lists (udecs):

udecs ::= ·
udecs, udec

udec ::= sdec
tdec.

In a TS elaboration context of the form sdec, udecs, the scope of the bound variable BV(sdec)
is udecs.

• Add sigid to the syntax of TSEL signature expressions, extend the TS elaborator judgment

udecs ` sigexp  sig : Sig

with a rule for elaborating them, and extend the TS elaborator with a judgement

udecs `ctx sigid  sig : Sig

for signature identifier lookup. (The rules are in Appendix D.2.)

We realize the basis interface for TS with

intf basis = var : sigbasis ; ·

where sigbasis contains at least the following fields which define three exceptions:

[Bind? :[tag:Unit Tag,Bind:Tagged],
Match?:[tag:Unit Tag,Match:Tagged],
fail? :[tag:Unit Tag, fail:Tagged]].

This choice ensures that TS elaboration contexts declare a structure basis : sigbasis , as assumed by
the TS elaborator.

We realize the elaborator judgemental stubs for TS in Appendix D.2. Elaboration uses a
renaming, σ, to support opening units while elaborating a unit or interface expression. We define the
syntax of renamings in Figure 26 and give auxiliary judgement forms in Figure 27. TS elaboration
contexts are created by rule 79. A unit with interface var : [sdecs]; tdecs is described in udecs by
the declaration 1 B unitid : [sdecs] and, if it is opened, by declarations that make its components
available for identifier lookup. The declarations that open unitid are:

1? B var : sig , tdecs

where sig is the selfified signature of unitid . The declaration of var makes the expression, type,
structure, and functor components of unitid visible and the declarations tdecs make its signature
components visible. After elaboration, we substitute unitid for free occurrences of var to obtain
HSIL code that does not depend on var .
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σ ::= ·
σ, var/var ′

Figure 26: Renamings

Judgement . . . Meaning . . .
udecs ` sdecs; tdecs  intf : Intf interface creation

udecs ` topdec  sbnds : (sdecs; tdecs) top-level declaration elaboration
udecs ` topspec  sdecs; tdecs top-level specification elaboration
udecs ` sigbind  tdecs signature binding elaboration
udecs ` sigexp  sig : Sig signature expression elaboration
udecs ` funspec  sdecs functor specification elaboration

udecs `ctx sigid  sig : Sig signature lookup

adecs ` open unitids  udecs, σ udecs declares units in adecs and
top-level identifiers in unitids

` udecs ok udecs is well-formed
udecs ` decs context coercion

Figure 27: Judgements of the elaborator realization for TS

4.3 Realization of the Linker for TS

We realize programs for TS as follows:

prog ::= exp : {}.

A program is a (closed) HSIL expression of type unit. We realize the linking judgemental stubs for
TS in Appendix D.3 using the auxiliary judgement form

` assm  bnds : decs

to obtain TDIL bindings for the units in an assembly. The rules for completion build an expression
of the form [sbnds].it where the structure [sbnds] contains a field for each unit in the assembly and
a final field it = {} of type unit. The structure for unit unitid is labunitid B unitid = mod where
mod is supplied by completion for the basis unit and taken from the assembly for all other units.

4.4 Dynamic Semantics of Programs in TS

We use the HSIL dynamic semantics to evaluate programs. Given a well-formed program prog =
exp : {}, we construct an initial state Σ = (·, ·, exp).

5 TD Realization

After a brief review of The Definition of Standard ML [MTHM97], we realize the semantics of
separate compilation for TD (Sections 5.1–5.3) and define a dynamic semantics for programs arising
from complete assemblies (Section 5.4).
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Judgement . . . Meaning . . .
B ` topdec ⇒ B′ top-level declaration elaboration

B ` strdec ⇒ E structure-level declaration elaboration
B ` strbind ⇒ SE structure binding elaboration
B ` strexp ⇒ E structure expression elaboration

B ` sigdec ⇒ G signature declaration elaboration
B ` sigbind ⇒ G signature binding elaboration
B ` sigexp ⇒ E signature expression elaboration
B ` sigexp ⇒ Σ
B ` spec ⇒ E specification elaboration
B ` strdesc ⇒ SE structure description elaboration

B ` fundec ⇒ F functor declaration elaboration
B ` funbind ⇒ F functor binding elaboration

Σ ≥ E signature instantiation
Φ ≥ (E, (T )E′) functor signature instantiation
E1 � E2 signature enrichment

` A ok A contains well-formed type structures

Figure 28: TD elaboration judgements (summary)

TD defines TDEL through elaboration and evaluation relations between source phrases and a
collection of semantic objects called the TD internal language (TDIL). The static semantic objects
record just enough information for type-checking and the dynamic semantic objects record just
enough information for evaluation.

The judgement forms of the TD elaborator are summarized in Figure 28 and the corresponding
TDIL objects are summarized in Figure 29. (The judgements for elaborating core and TDEL
program constructs—and the corresponding semantic objects—are omitted.) In presenting, and
later extending, the TDIL, we use the following notation:

• Fin(A) denotes the set of finite subsets of A.

• A×B denotes the cartesian product of A and B and Ak denotes a sequence of length k whose
range is a subset of A.

• Fin(A) denotes the set of finite subsets of A.

• A
fin→ B denotes the set of finite, partial functions from A to B.

• A∪B denotes the disjoint union of A and B and a/b is a compound metavariable that ranges
over this union.

Elaboration judgements have the form A ` phrase ⇒ A′ and mean that phrase elaborates to
A′ in context A. To account for type generativity and type sharing in Standard ML, the rules are
state-passing: They track the set of type names that “have been generated” to ensure that “new”
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B or T, F,G,E ∈ Basis = TyNameSet× FunEnv × SigEnv × Env
T ∈ TyNameSet = Fin(TyName)

F ∈ FunEnv = FunId fin→ FunSig

G ∈ SigEnv = SigId fin→ Sig
E or (SE ,TE ,VE ) ∈ Env = StrEnv × TyEnv ×ValEnv
Φ or (T )(E, (T ′)E′) ∈ FunSig = TyNameSet× (Env × Sig)

Σ or (T )E ∈ Sig = TyNameSet× Env

SE ∈ StrEnv = StrId fin→ Env

TE ∈ TyEnv = TyCon fin→ TyStr

VE ∈ ValEnv = VId fin→ TypeScheme× IdStatus
(θ,VE ) ∈ TyStr = TypeFcn×ValEnv

σ or ∀α(k).τ ∈ TypeScheme =
⋃

k≥0 TyVark × Type
θ or Λα(k).τ ∈ TypeFcn =

⋃
k≥0 TyVark × Type

τ ∈ Type = TyVar× RowType× FunType× ConsType
(α1, · · · , αk) or α(k) ∈ TyVark

% ∈ RowType = Lab fin→ Type
τ → τ ′ ∈ FunType = Type× Type

ConsType =
⋃

k≥0 ConsType(k)

τ (k)t ∈ ConsType(k) = Typek × TyName(k)

(τ1, · · · , τk) or τ (k) ∈ Typek

t ∈ TyName (type names)
funid ∈ FunId (functor identifiers)
sigid ∈ SigId (signature identifiers)
strid ∈ StrId (structure identifiers)
tycon ∈ TyCon (type constructors)

vid ∈ VId (value identifiers)
α or tyvar ∈ TyVar (type variables)

is ∈ IdStatus = {c, e, v} (identifier status descriptors)
lab ∈ Lab (labels)

Figure 29: TDIL static semantic objects (summary)
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Judgement . . . Meaning . . .
s,B ` topdec ⇒ B′, s′ top-level declaration evaluation

s,B ` strdec ⇒ E/p, s′ structure-level declaration evaluation
s,B ` strbind ⇒ SE/p, s′ structure binding evaluation
s,B ` strexp ⇒ E/p, s′ structure expression evaluation

s,B ` fundec ⇒ F, s′ functor declaration evaluation
s,B ` funbind ⇒ F, s′ functor binding evaluation

IB ` sigdec ⇒ G signature declaration elaboration
IB ` sigbind ⇒ G signature binding elaboration
IB ` sigexp ⇒ I signature expression elaboration
IB ` sigexp ⇒ Σ
IB ` spec ⇒ I specification elaboration
IB ` strdesc ⇒ SI structure description elaboration

E ↓ I = E′ signature ascription

Figure 30: TD evaluation judgements (summary)

type names can always be chosen to represent abstract types in phrase. The type names bound in
A are those that were generated prior to elaborating phrase, the type names bound in A′ are those
that are generated by elaborating phrase, and the type names free in A′ and bound in A represent
references in phrase to “old” types.

For example, in a basis B = T, F,G,E, the set T binds type names with scope F , G, E. In the
judgement

B ` topdec ⇒ B′,

B describes everything that was elaborated prior to topdec and B′ describes the components of
topdec. Abstract types declared in topdec are represented by bound type names in B′.

The instantiation and enrichment relations describe signature matching in terms of TDIL en-
vironments and signatures. In a signature Σ = (T )E, the set T binds type names with scope E
that represent abstract types specified by the signature. Instantiation (T )E1 ≥ E2 checks that E2

can be obtained from E1 by substituting for type names in T . Enrichment E1 � E2 permits E1

to have more components than E2 and for components to be less polymorphic. An environment E
matches Σ if there exists E′ such that Σ ≥ E′ ≺ E.

The TD dynamic semantics is a big-step, call-by-value operational semantics. The judgement
forms for TD evaluation are summarized in Figure 30 and the corresponding TDIL objects are given
in Figure 31.7 (The judgements for evaluating core and TDEL program constructs are omitted.)
Evaluation judgements have the form s,A ` phrase ⇒ A′, s′ and mean that phrase evaluates to A′

in context A, where s and s′ are states before and after evaluation. Most TDEL type information is
erased prior to evaluation but signature ascriptions are retained. The rules for signature ascription
use E ↓ I to thin the environment E so that a subsequent evaluation of open does not shadow

7In many cases, the same names are used for static and dynamic TDIL objects. Such names refer to static semantic
objects except in Section 5.4 and Appendix E.4 where they refer to dynamic semantic objects unless the subscript
(·)STAT is used.
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(F,G,E) or B ∈ Basis = FunEnv × SigEnv × Env
(G, I) or IB ∈ IntBasis = SigEnv × Int

(mem, ens) or s ∈ State = Mem× ExNameSet
[e] or p ∈ Pack = ExVal

F ∈ FunEnv = FunId fin→ FunctorClosure

G ∈ SigEnv = SigId fin→ Int
(SE ,TE ,VE ) or E ∈ Env = StrEnv × TyEnv ×ValEnv

(SI ,TI ,VI ) or I ∈ Int = StrInt× TyInt×ValInt

mem ∈ Mem = Addr fin→ Val
ens ∈ ExNameSet = Fin(ExName)

e ∈ ExVal = ExName ∪ (ExName×Val)
(strid : I, strexp, B) ∈ FunctorClosure = (StrId× Int)× StrExp× Basis

SE ∈ StrEnv = StrId fin→ Env

TE ∈ TyEnv = TyCon fin→ ValEnv

VE ∈ ValEnv = VId fin→ Val× IdStatus

SI ∈ StrInt = StrId fin→ Int

TI ∈ TyInt = TyCon fin→ ValInt

VI ∈ ValInt = VId fin→ IdStatus
v ∈ Val = {:=} ∪ SVal ∪ BasVal ∪VId

∪ (VId×Val) ∪ ExVal
∪Record ∪Addr ∪ FcnClosure

r ∈ Record = Lab fin→ Val
(match, E,VE ) ∈ FcnClosure = Match× Env ×ValEnv

en ∈ ExName (exception names)
a ∈ Addr (addresses)

sv ∈ SVal (special values)
b ∈ BasVal (basic values)

Figure 31: TDIL dynamic semantic objects
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identifiers bound in E but hidden by I. The dynamic semantics elaborates signatures rather than
compute I from the TDIL objects generated by “full” elaboration.

5.1 Realization of the Internal Language for TD

To account for type sharing with separate compilation, we assume that the TD elaborator generates
principal TDIL and we ensure that the TD realization preserves principality. For example, we
assume that the TD elaborator judgement

B ` sigexp ⇒ Σ

produces a signature Σ that is principal for sigexp in B, meaning that the type names in Σ share only
when required by the source. Without principality, it would be possible for separately elaborated
assemblies to use the same type name t for different types or to use distinct type names t and t′

for the same type so that linking them together would introduce “accidental” sharing or would fail
to impose required sharing.

We distinguish between external and internal names for types. An internal name t is a TDIL
type name. An external name path is used to make definite reference to an externally defined type.
A path of the form unitid .longtycon refers to the type constructor longtycon defined in the unit
unitid . A path of the form unitid .n refers to a type defined in the unit unitid that, in the source for
unitid , escapes its scope. (Labels n are assigned to such types when interfaces are inferred.) The
rules avoid accidental sharing by alpha-varying bound internal names when interfaces are added
to context and preserve required sharing between units and assemblies by using external names in
interfaces.

We extend the TDIL in Figure 32 and realize the IL syntactic stubs for TD in Figure 33. A
compiled unit contains source code and a record of interface ascriptions. A compiled interface
comprises a basis B describing units with this interface, imports IP governing external references
to types, and labels L assigning external names to those types bound in B that can not be named
in source code. In an interface IP , B, L with B = T, F,G,E, the set dom(IP) binds type names
with scope B and the set T binds type names with scope F , G, E, and L. A well-formed interface
IP , (T, F,G,E), L has no free type names and satisfies rng(L) ⊂ T . A context UE maps a unit
identifier to the basis B and labels L describing it, with appropriate sharing.

We realize the IL judgemental stubs for TD in Appendix E.1 using the auxiliary judgement
forms given in Figure 34. An elaboration basis B binds all of the type names generated by units in
the assembly and the top-level components of any opened units. A compiled unit is well-formed if
its top-level declaration elaborates and any interface ascriptions respect the sub-interface relation.
The sub-interface relation, analogous to signature matching, relies on instantiation and enrichment.

IP ∈ Imports = TyName fin→ Path

L ∈ Labels = Nat fin→ TyName

IE ∈ ImportEnv = Path fin→ TyName

UE ∈ UnitEnv = UnitId fin→ Basis× Labels
path ∈ Path = UnitId× (LongTyCon ∪Nat)

unitid ∈ UnitId (unit identifiers)
n ∈ Nat (natural numbers)

Figure 32: TDIL extensions for the IL
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intf ::= IP , B, L imports, basis, and labels
impl ::= unitexp basic

impl : intf coerced to intf
Γ ::= UE unit environment

Figure 33: Realization of IL syntax for TD

Judgement . . . Meaning . . .
Γ ` B ⇒ intf : Intf interface creation
Γ ` intf ⇒ B,L interface realization

Γ ` open unitids ⇒ B B declares type names in Γ and
top-level identifiers in unitids

Figure 34: Judgements of the IL realization for TD

5.2 Realization of the Elaborator for TD

We realize the basis interface for TD with

intf basis = {}, B0, {}

where B0 is defined in [MTHM97, Appendix C]. This choice ensures that every TD elaboration
basis B declares the types, values, and exceptions assumed by the TD elaborator and derived forms.

We realize the elaboration judgemental stubs for TD in Appendix E.2 using the auxiliary judge-
ment forms given in Figure 35. Rule 110 for interface ascription produces a compiled unit of the
form impl0 : intf . During evaluation, the basis for such a unit is thinned analogous to the treatment
of signature ascription in the TD evaluator.

5.3 Realization of the Linker for TD

We realize programs for TD as follows:

prog ::= assm.

A program is a (complete) IL assembly. We realize the linking judgemental stubs for TD in
Appendix E.3.

5.4 Dynamic Semantics of Programs in TD

The dynamic semantics of programs is based on the dynamic semantics for TDEL, on the dynamic
TDIL extended with

UE ∈ UnitEnv = UnitId fin→ Basis,

and on the basis B0 and state s0 defined in [MTHM97, Appendix D].

Judgement . . . Meaning . . .
B ` topspec ⇒ B′ top-level specification elaboration
B ` funspec ⇒ F functor specification elaboration

Figure 35: Judgements of the elaborator realization for TD
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Judgement . . . Meaning . . .
` prog ⇒ UE/p, s program evaluation
s,UE ` assm ⇒ UE ′/p, s′ assembly evaluation
s,UE ` impl ⇒ B/p, s′ unit evaluation
UE ` open unitids ⇒ B B binds top-level identifiers in unitids

Figure 36: Judgements of the dynamic semantics of programs in the TD realization

The judgement forms for evaluating programs are given in Figure 36 and the rules are given
in Appendix E.4. The rules evaluate the units in a program in sequence, stopping on uncaught
exceptions. Rules 119 and 120 implement the basis unit.

6 Related Work

A distinction between this proposal and most other languages for separate compilation is that the
EL is stratified into three levels (SML core, SML modules, and separate compilation) rather than
two or one. Pragmatically, this ensure that the proposal is compatible with existing SML code and
compilers. The IL is similarly stratified because it is unclear how to extend the type theory for ML
modules in [Ler94, HL94] to account for signature definitions in structures.

A second distinction is that EL and IL units and interfaces are not independently meaningful,
but instead contain free identifiers whose types are obtained from the ambient assembly. This
makes source and compiled interfaces smaller and is natural given our use of definite references.

In this proposal, we take the view that a library is an assembly that can be linked with other
assemblies. The benefits of this approach are its simplicity and its support for selective linking.
We provide no mechanism for managing the global namespace of unit identifiers so the names of
“private” library units may interfere with names used by other assemblies. We leave the solution
of this namespace problem to future work.

We have presented the semantics of separate compilation in a form that is largely independent
of the underlying semantic framework for SML. Modular presentations of this sort are not new.
Ancona and Zucca [AZ02] define their module system over an unspecified core language, using
explicit substitutions to represent core terms that refer to modules. Leroy [Ler00] implements the
type-theory for ML modules in a way that is parameterized by a core language and its type-checker.
He instantiates the system with two core languages, mini-ML and mini-C.

Languages for Separate Compilation. Cardelli [Car97] investigates separate compilation for
the simply-typed λ-calculus and discusses some of the obstacles to overcome in designing a language
for separate compilation. Several specific aspects of the current design arise in this simpler setting,
including the use of interfaces to govern separate type-checking and type-safe linking and the use of
globally unique names so that linking can resolve external references. Glew and Morrisett [GM99]
describe separate compilation for Typed Assembly Language [MWCG99]. Their language, MTAL,
permits type definitions, abstract types, and polymorphic types in interfaces and supports recursive
linking. They suggest an explicit α-conversion operation that turns a global name defined by a
typed object file into a local one to alleviate the problem with global scoping.

Harper and Pierce [HP05] discuss language design for advanced modularity mechanisms, includ-
ing separate compilation. Particularly relevant to the current work is their discussion of abstract
type components and type sharing. They describe the use of definite references to avoid the co-
herence problems (and excess sharing specifications) that arise from aliasing. They also discuss
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side-effects and the important distinction between initialization and interface dependencies.
Mixin modules are incomplete and mutually recursive code fragments that can be separately

compiled and flexibly linked together. Mixin systems have been used or proposed for Standard
ML [DS96], scheme [FF98], and C [RFS+00]. Mixin calculi [WV00, AZ02] are expressive enough to
encode various λ-calculi, object calculi, and module systems. Call-by-value mixin calculi have been
defined by translation to a λ-calculus and by a small-step reduction semantics [HLW04]. A type
system for simply-typed mixins with principal typings and a compositional type inference algorithm
has been developed and extended with ML-style let-polymorphism [MW05]. These calculi do not
support ML-style type components, abstract types, and type sharing, but Ancona and Zucca [AZ02]
suggest how their calculus could be extended to support type components in a way that respects
the phase distinction.

Objective CAML. The separate compilation system implemented as part of Objective CAML
has some important similarities to the design presented here. Objective CAML [LDG+05] provides
notions of units (.ml files) and interfaces (.mli files) and, as here, a unit is coerced to its stated
interface when one is provided.

There are also at least two important differences. First, Objective CAML is defined by its
implementation and related tools, rather than by a formal specification. Second, like many systems
but unlike the design presented here, Objective CAML obtains the name of a unit from the name
of the file that contains it. Consequently, the selection of unit names is limited by file system
considerations, and restructuring of a project on its storage device must be accompanied by changes
to the code.

Moscow ML. The separate compilation system implemented as part of Moscow ML [RRS00] is
similar to that in Objective CAML, with one notable extension. A programmer may describe the
units, interfaces, and dependencies in a program in a form that is similar to an EL assembly. The
mosmake [Mak02] tool converts such a description to a makefile.

Standard ML of New Jersey. The Compilation Manager for Standard ML of New Jersey
(CM) [Blu02] is a convenient tool for compiling whole SML programs. CM permits a program to
be divided into a hierarchy of libraries [BA99]. A library comprises a list of imported libraries, SML
source files, and a list of SML symbols exported by the library. Dependencies between libraries are
explicit but dependencies among the SML source files in a library are inferred [Blu99, HLPR94]. CM
can generate SML source using tools or shell recipes, provides control over the SML identifiers visible
to an SML file, and supports conditional compilation, parallel compilation, and cut-off incremental
recompilation. CM has no notion akin to an EL interface and does not support compiling a unit
with an ascribed interface or compiling against an unimplemented unit described by an interface.
A tool to translate a web of interconnected CM files to a complete EL assembly would enable
users to compile programs written in CM notation with implementations of the proposed separate
compilation facility.
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A Internal Language Static Semantics

In the inference rules, either all optional elements or none must be present.

Definition 1. The domain of an IL context, dom(adecs), is defined by

dom(adec1, . . . , adecn) = {dom(adec1), . . . ,dom(adecn)}

where dom(adec) is defined by dom(unitid : intf ) = unitid.

adecs ` assm ok

` adecs ok

adecs ` · ok (1)

unitid 6∈ dom(adecs)
adecs ` intf : Intf

adecs, unitid : intf ` assm ok

adecs ` unitid : intf , assm ok (2)

unitid 6∈ dom(adecs)
adecs ` unite : intf

adecs, unitid : intf ` assm ok

adecs ` unitid : intf = unite, assm ok (3)

adecs ` intf : Intf

adecs ` Γ
Γ ` intf : Intf

adecs ` intf : Intf (4)

adecs ` unite : intf

unite = 〈internal〉 require unitid1 · · · unitidn in impl
unitid1 ∈ dom(adecs) · · · unitidn ∈ dom(adecs)

adecs ` impl : intf

adecs ` unite : intf (5)

adecs ` impl : intf

adecs ` Γ
Γ ` impl : intf

adecs ` impl : intf (6)
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adecs ` intf ≡ intf ′ : Intf

adecs ` Γ
Γ ` intf ≡ intf ′ : Intf

adecs ` intf ≡ intf ′ : Intf (7)

adecs ` intf ≤ intf ′ : Intf

adecs ` Γ
Γ ` intf ≤ intf ′ : Intf

adecs ` intf ≤ intf ′ : Intf (8)

` adecs ok

` · ok (9)

` adecs ok
unitid 6∈ dom(adecs)
adecs ` intf : Intf

` adecs, unitid : intf ok (10)

B Elaboration

Definition 2. The domain of an elaboration context, dom(edecs), is defined by:

dom(·) = ∅
dom(edecs, adec) = dom(edecs) ∪ {dom(adec)}
dom(edecs, intid : Intf = intf ) = dom(edecs) ∪ {intid}.

` assembly  assm; edecs

` · basis : intf basis ; basis : intf basis (11)

Rule 11: The basis unit is implicit in every EL assembly.

` assembly  assm; edecs
intid 6∈ dom(edecs)

edecs ` intexp  intf

` assembly , intid = intexp  assm; edecs, intid : Intf = intf (12)

` assembly  assm; edecs
unitid 6∈ dom(edecs)
edecs ` intexp  intf

` assembly , unitid : intexp  assm, unitid : intf ; edecs, unitid : intf (13)

34



` assembly  assm; edecs
unitid 6∈ dom(edecs)

edecs ` unitexp  unite : intf

` assembly , unitid = unitexp  
assm, unitid : intf = unite; edecs, unitid : intf

(14)

` assembly  assm; edecs
unitid 6∈ dom(edecs)
edecs ` intexp  intf

edecs ` unitexp  unite0 : intf 0

edecs ` unite0 : intf 0 � intf  unite

` assembly , unitid : intexp = unitexp  
(assm, unitid : intf = unite); (edecs, unitid : intf )

(15)

edecs ` unitexp  unite : intf

edecs ` adecs
unitexp = open unitids in topdec

adecs ` open (basis unitids) in topdec  impl : intf
unite = internal require (basis unitids) in impl

edecs ` unitexp  unite : intf (16)

Rule 16: The basis unit is implicitly imported for the elaboration of every top-level declaration.

edecs ` intexp  intf : Intf

edecs ` adecs adecs ` open (basis unitids) in topspec  intf

edecs ` open unitids in topspec  intf : Intf (17)

Rule 17: The basis unit is implicitly imported for the elaboration of every top-level specification.

edecs ′, intid : Intf = intf , edecs ′′ ` intid  intf : Intf (18)

edecs ` unite0 : intf 0 � intf  unite

unite0 = 〈internal〉 require unitids in impl0
edecs ` adecs adecs ` Γ Γ ` impl0 : intf 0 � intf  impl

unite = require unitids in impl

edecs ` unite0 : intf 0 � intf  unite (19)

edecs ` adecs

· ` · (20)
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edecs ` adecs

edecs, unitid : intf ` adecs, unitid : intf (21)

edecs ` adecs

edecs, intid : Intf = intf ` adecs (22)

` edecs ok

` · ok (23)

` edecs ok unitid 6∈ dom(edecs) edecs ` adecs adecs ` intf : Intf

` edecs, unitid : intf ok (24)

` edecs ok intid 6∈ dom(edecs) edecs ` adecs adecs ` intf : Intf

` edecs, intid : Intf = intf ok (25)

C Linking and Completion

We denote by U(assm) the function that coerces an IL assembly to an assembly context by dropping
unit implementations.

Definition 3. The domain of an IL assembly, dom(assm), is defined by:

dom(assm) = dom(U(assm)).

Definition 4. The domain of a combination context, dom(cdecs), is defined by:

dom(·) = ∅
dom(cdecs, unitid :〈i〉 intf ) = dom(cdecs) ∪ {unitid}.

` lscript  assm

` assms  assm

` combine assms  assm (26)

` assms  assm ′

deps = assm ′; unitids
`deps assm ′  assm

` from assms select unitids  assm (27)
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cdecs ` assms  assm

cdecs ` · · (28)

cdecs ` assms  assm

cdecs ` ·; assms  assm (29)

unitid 6∈ dom(cdecs)
cdecs, unitid : intf ` assm ′; assms  assm

cdecs ` (unitid : intf , assm ′); assms  unitid : intf , assm (30)

unitid 6∈ dom(cdecs)
unite = 〈internal〉 require unitids in impl

cdecs, unitid :〈i〉 intf ` assm ′; assms  assm

cdecs ` (unitid : intf = unite, assm ′); assms  
unitid : intf = unite, assm

(31)

cdecs = cdecs ′, unitid : intf ′, cdecs ′′

cdecs ` adecs adecs ` intf ≡ intf ′ : Intf
cdecs ` assm ′; assms  assm

cdecs ` (unitid : intf , assm ′); assms  assm (32)

adecs `deps assm  assm ′

adecs `deps · · (33)

6` deps requires unitid
adecs, unitid : intf `deps assm  assm ′

adecs `deps unitid : intf 〈= unite〉, assm  assm ′ (34)

` deps requires unitid
adecs, unitid : intf `deps assm  assm ′

adecs `deps unitid : intf 〈= unite〉, assm  
unitid : intf 〈= unite〉, assm ′ (35)

` deps requires unitid

unitid ∈ {unitid1, . . . , unitidn}
` assm; unitid1 · · · unitidn requires unitid (36)

` assm; unitids requires unitid ′

assm = (assm ′, unitid ′ : intf 〈= unite〉, assm ′′)
` intf requires unitid

` assm; unitids requires unitid (37)
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` assm; unitids requires unitid ′

assm = (assm ′, unitid ′ : intf = unite, assm ′′)
unite = 〈internal〉 require unitids in impl

` impl requires unitid

` assm; unitids requires unitid (38)

` assm; unitids requires unitid ′

assm = (assm ′, unitid ′ : intf = unite, assm ′′)
unite = 〈internal〉 require unitid1 · · · unitidn in impl

unitid ∈ {unitid1, . . . , unitidn}
` assm; unitids requires unitid (39)

adecs ` assm complete

` adecs ok

adecs ` · complete (40)

basis 6∈ dom(adecs)
adecs ` intf ≡ intf basis : Intf

adecs, basis : intf ` assm complete

adecs ` basis : intf , assm complete (41)

Rule 41: The basis unit is the only unit that may be unimplemented in a complete IL assembly.
Conceptually, the judgement ` assm  prog supplies an implementation.

unitid 6∈ dom(adecs) ∪ {basis}
adecs ` unite : intf

adecs, unitid : intf ` assm complete

adecs ` unitid : intf = unite, assm complete (42)

cdecs ` adecs

· ` · (43)

cdecs ` adecs

cdecs, unitid :〈i〉 intf ` adecs, unitid : intf (44)

` lscript ok

` assms ok

` combine assms ok (45)
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` assms ok
assms = assm1; · · · ; assmm

{unitid1, . . . , unitidn} ⊂ dom(assm1) ∪ · · · ∪ dom(assmm)

` from assms select unitid1 · · · unitidn ok (46)

adecs ` assms ok

` adecs ok

adecs ` · ok (47)

adecs ` assm ok ` assms ok

adecs ` assm; assms ok (48)

Rule 48: The first assembly may make reference to units declared in adecs. Subsequent assemblies
must be well-formed in isolation.

` cdecs ok

` · ok (49)

` cdecs ok
unitids 6∈ dom(cdecs)

cdecs ` adecs
adecs ` intf : Intf

` cdecs, unitid :〈i〉 intf ok (50)

` deps ok

` assm ok
{unitid1, . . . , unitidn} ⊂ dom(assm)

` assm; unitid1 · · · unitidn ok (51)

D Realization for The Typed Semantics

D.1 Realization of the IL Static Semantics for TS

Definition 5. The domain of a top-level declarations list, dom(tdecs), is defined by:

Function Definition
dom(tdecs) dom(tdec1, . . . , tdecn) = {dom(tdec1), . . . ,dom(tdecn)}
dom(tdec) dom(sigid : Sig = sig) = sigid .
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decs ` intf : Intf

var 6∈ BV(decs) decs ` sdecs ok decs, var : [sdecs] ` tdecs ok

decs ` (var : [sdecs]; tdecs) : Intf (52)

decs ` tdecs ok

` decs ok
sigid1, . . . , sigidn are distinct

decs ` sig1 : Sig · · · decs ` sign : Sig

decs ` (sigid1 : Sig = sig1, . . . , sigidn : Sig = sign) ok (53)

decs ` impl : intf

var 6∈ BV(decs) decs ` mod : [sdecs] decs, var : [sdecs] ` tdecs ok

decs ` mod : (var : [sdecs]; tdecs) (54)

decs ` intf ≡ intf ′ : Intf

var 6∈ BV(decs) var ′ 6∈ BV(decs) ∪ {var}
decs ` sdecs ≡ sdecs ′ decs, var : [sdecs] ` var : sig

decs, var : [sdecs], var ′ : sig ` tdecs ≡ tdecs ′

decs ` (var : [sdecs]; tdecs) ≡ (var ′ : [sdecs ′]; tdecs ′) : Intf (55)

Rule 55: The signature sig should be the fully selfified signature for var , in order to maximize type
sharing when signatures in tdecs and tdecs ′ are compared.

decs ` tdecs ≡ tdecs ′

decs ` tdecs ⊃ tdecs ′ decs ` tdecs ′ ⊃ tdecs

decs ` tdecs ≡ tdecs ′ (56)

decs ` intf ≤ intf ′ : Intf

var 6∈ BV(decs) var ′ 6∈ BV(decs) ∪ {var}
decs ` sdecs ≤ sdecs ′ decs, var : [sdecs] ` var : sig

decs, var : [sdecs], var ′ : sig ` tdecs ⊃ tdecs ′

decs ` (var : [sdecs]; tdecs) ≤ (var ′ : [sdecs ′]; tdecs ′) : Intf (57)

Rule 57: The signature sig should be the fully selfified signature for var , in order to maximize type
sharing when signatures in tdecs and tdecs ′ are compared.
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decs ` tdecs ⊃ tdecs ′

decs ` tdecs ok

decs ` tdecs ⊃ · (58)

sigid 6∈ dom(tdecs ′)
tdecs = (tdecs1, sigid = sig ′ : Sig, tdecs2) decs ` sig ≡ sig ′ : Sig

decs ` tdecs ⊃ tdecs ′

decs ` tdecs ⊃ (tdecs ′, sigid = sig : Sig) (59)

adecs ` decs

· ` · (60)

adecs ` Γ unitid 6∈ BV(Γ) var 6∈ BV(Γ)
Γ ` sdecs ok Γ, var : [sdecs] ` tdecs ok

adecs, unitid : (var : [sdecs]; tdecs) ` Γ, unitid : [sdecs] (61)

D.2 Realization of the Elaborator for TS

Definition 6. The domain of an elaboration context, dom(udecs), is defined by:

Function Definition
dom(udecs) dom(udec1, . . . , udecn) = {dom(udec1), . . . ,dom(udecn)}
dom(udec) dom(sdec) = dom(sdec)

dom(tdec) = dom(tdec)
dom(sdec) dom(lab B dec) = lab.

Definition 7. The set of bound variables in an elaboration context, BV(udecs), is defined by:

Function Definition
BV(udecs) BV(·) = ∅

BV(udecs, sdec) = BV(udecs) ∪ {BV(sdec)}
BV(udecs, tdec) = BV(udecs)

BV(sdec) BV(lab B dec) = BV(dec).

Definition 8. The notation {phrase/var}tphrase denotes the capture-free substitution of phrase
for free occurrences of var within tphrase, where tphrase is defined by:

tphrase ::= sbnds
sdecs
tdecs.

Definition 9. We define the application of a renaming to a tphrase, {σ}tphrase, by:

{·}tphrase = tphrase
{σ, var/var ′}tphrase = {σ}({var/var ′}tphrase)
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The TS elaborator handles shadowing of external language identifiers using an operation of
syntactic concatenation with renaming. The notation is sbnds++sbnds ′ : sdecs++sdecs ′ and the
operation renames shadowed labels so that they are unavailable to identifier lookup but so that the
result of elaboration may continue to refer to “hidden” components through their variables. We
can simply drop shadowed signature identifiers as tdecs do not bind variables.

Definition 10. We define the shadowing operation tdecs++tdecs ′ by:

(·++tdecs ′) = tdecs ′

((sigid : Sig = sig , tdecs)++tdecs ′) ={
sigid : Sig = sig , tdecs ′′ if sigid 6∈ dom(tdecs ′′)
tdecs ′′ otherwise

where tdecs ′′ = tdecs++tdecs ′.

adecs ` open unitids in topdec  impl : intf

adecs ` open unitids  udecs, σ
udecs ` topdec  sbnds : (sdecs; tdecs)

impl = [{σ}sbnds] udecs ` {σ}sdecs; {σ}tdecs  intf : Intf

adecs ` open unitids in topdec  impl : intf (62)

adecs ` open unitids in topspec  intf : Intf

adecs ` open unitids  udecs, σ
udecs ` topspec  sdecs; tdecs

udecs ` {σ}sdecs; {σ}tdecs  intf : Intf

adecs ` open unitids in topspec  intf : Intf (63)

udecs ` sdecs ; tdecs  intf : Intf

var 6∈ BV(decs)
sdecs = lab1 B dec1, . . . , labn B decn

var1 = BV(dec1) · · · varn = BV(decn)
tdecs ′ = {var .lab1/var1} · · · {var .labn/varn}tdecs
udecs ` sdecs; tdecs  (var : [sdecs]; tdecs ′) : Intf (64)

decs ` impl0 : intf 0 � intf  impl

var0 6= var
decs, var0 : [sdecs0] `sub var0 : [sdecs0] � [sdecs] mod ′ : sig

decs, var0 : [sdecs0], var : sig ` tdecs0 ⊃ tdecs
mod = (((λvar0 : [sdecs0].mod ′) mod0) : [sdecs])

decs ` mod0 : (var0 : [sdecs0]; tdecs0) � (var : [sdecs]; tdecs) mod (65)

Rule 65: The TS coercion compilation judgement produces the “leaky” signature sig for imple-
menting SML transparent ascription. We use it to maximize sharing when signatures in tdecs and
tdecs0 are compared.
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udecs ` topdec  sbnds : (sdecs ; tdecs)

udecs ` strdec  sbnds : sdecs
〈udecs, sdecs ` topdec  sbnds ′ : (sdecs ′; tdecs)〉
udecs ` strdec 〈topdec〉 

sbnds〈++sbnds ′〉 : (sdecs〈++sdecs ′〉; ·〈++tdecs〉) (66)

udecs ` sigbind  tdecs
〈udecs, tdecs ` topdec  sbnds : (sdecs; tdecs ′)〉

udecs ` signature sigbind 〈topdec〉 
·〈, sbnds〉 : (·〈, sdecs〉; tdecs〈++tdecs ′〉) (67)

udecs ` funbind  sbnds : sdecs
〈udecs, sdecs ` topdec  sbnds ′ : (sdecs ′; tdecs)〉
udecs ` functor funbind 〈topdec〉 

sbnds〈++sbnds ′〉 : (sdecs〈++sdecs ′〉; ·〈++tdecs〉) (68)

udecs ` topspec  sdecs ; tdecs

udecs ` spec  sdecs

udecs ` spec  sdecs; · (69)

udecs ` funspec  sdecs

udecs ` functor funspec  sdecs; · (70)

udecs ` sigbind  tdecs

udecs ` signature sigbind  ·; tdecs (71)

udecs ` topspec1  sdecs1; tdecs1

udecs, sdecs1, tdecs1 ` topspec2  sdecs2; tdecs2

udecs ` decs
decs ` sdecs1, sdecs2 ok decs ` tdecs1, tdecs2 ok

udecs ` topspec1 topspec2  sdecs1, sdecs2; tdecs1, tdecs2 (72)

Rule 72: Because of include, there is no way to restrict the syntax to ensure that the concatenation
sdecs1, sdecs2 is well-formed.

udecs ` sigbind  tdecs

udecs ` sigexp  sig : Sig
〈udecs ` sigbind  tdecs sigid 6∈ dom(tdecs)〉

udecs ` sigid = sigexp 〈and sigbind〉 sigid = sig〈, tdecs〉 (73)
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udecs ` sigexp  sig : Sig

udecs `ctx sigid  sig : Sig

udecs ` sigid  sig : Sig (74)

Rule 74: We add this rule to the TS rules for elaborating signature expressions.

udecs ` funspec  sdecs

udecs ` sigexp  sig : Sig var 6∈ BV(udecs)
udecs, strid B var : sig ` sigexp ′  sig ′ : Sig

〈udecs ` funspec  sdecs funid 6∈ dom(sdecs)〉
udecs ` funid(strid : sigexp) : sigexp ′ 〈and funspec〉 

funid : (var : sig ⇀ sig ′)〈, sdecs〉 (75)

udecs `ctx sigid  sig : Sig

udecs, sigid : Sig = sig `ctx sigid  sig : Sig (76)

sigid ′ 6= sigid udecs `ctx sigid  sig : Sig

udecs, sigid ′ : Sig = sig ′ `ctx sigid  sig : Sig (77)

udecs `ctx sigid  sig : Sig

udecs, sdec `ctx sigid  sig : Sig (78)

adecs ` open unitids  udecs , σ

unitid1, . . . , unitidn ∈ dom(adecs)
adecs ` decs decs = dec1, . . . , decm

udecs0 = 1 B dec1, . . . , 1 B decm

adecs = adecs ′1, unitid1 : (var1 : [sdecs1]; tdecs1), adecs ′′1
decs ` unitid1 : sig1 udecs1 = 1? B var1 : sig1, tdecs1

...
adecs = adecs ′n, unitidn : (varn : [sdecsn]; tdecsn), adecs ′′n
decs ` unitidn : sign udecsn = 1? B varn : sign, tdecsn

udecs = udecs0, udecs1, . . . , udecsn

σ = unitid1/var1, . . . , unitidn/varn

adecs ` open unitid1 · · · unitidn  udecs, σ (79)

Rule 79: The signature sig i should the fully selfified signature for unitid i, in order to ensure that
types projected from the “open” modules var i are equivalent to the corresponding types in unitid i.
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` udecs ok

` · ok (80)

` udecs ok udecs ` decs decs ` dec ok

` udecs, lab B dec ok (81)

` udecs ok udecs ` decs decs ` tdec ok

` udecs, tdec ok (82)

udecs ` decs

udecs ` decs

udecs, lab B dec ` decs, dec (83)

udecs ` decs

udecs, tdec ` decs (84)

D.3 Realization of the Linker for TS

Definition 11. The structure modbasis must satisfy ` modbasis : sigbasis ; in particular, it must
contain at least the following fields:

[Bind? =[tagBvar=new tag[Unit],Bind=tag(var , {})],
Match?=[tagBvar=new tag[Unit],Match=tag(var , {})],
fail? =[tagBvar=new tag[Unit], fail=tag(var , {})]].

` assm  prog

` assm  bnd1, . . . , bndn : decs var 6∈ BV(decs)

` assm  [1 B bnd1, . . . , n B bndn, it B var = {}].it : {} (85)

` assm  bnds : decs

` · · : · (86)

` assm  bnds : decs

` assm, basis : (var : [sdecs]; tdecs) 
(bnds, basis = modbasis) : (decs, basis : [sdecs])

(87)

Rule 87: Since ` assm complete, [sdecs] is equivalent to sigbasis .
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unitid 6= basis
` assm  bnds : decs

intf = var : [sdecs]; tdecs
unite = 〈internal〉 require unitids in mod

` assm, unitid : intf = unite  
(bnds, unitid = mod) : (decs, unitid : [sdecs])

(88)

` intf requires unitid

unitid ∈ FV(intf )

` intf requires unitid (89)

` impl requires unitid

unitid ∈ FV(mod)

` mod requires unitid (90)

` prog ok

` exp : {}
` exp : {} ok (91)

E Realization for The Definition

E.1 Realization of the IL Static Semantics for TD

We adopt the following notation:

• We write (· of ·) for projection from TDIL objects; for example, T of B means “the type
names component of B”.

• The notation tynames A denotes the set of free type names in A. We adopt the TD notation
ϕ(A) for the application of a TD realization ϕ : TyName → TypeFcn to a semantic object A.

• We adopt the TD notations A + A′ for the modification of one map by another and A ⊕ A′

for modification that also extends T of A to include the type names of A′.

• We adopt the TD notation E(·) for long identifier lookup and define the function UE : Path ⇀
TyName for path lookup by:

UE (unitid .longtycon) = t
if UE (unitid) = (T, F,G,E), L
and E(longtycon) = (t,VE )

UE (unitid .n) = t
if UE (unitid) = (B,L)
and L(n) = t.

46



• In addition to projection, we write (· of UE ) for the sets of internal and external names bound
by UE :

T of UE =
⋃
{T of B ; (B,L) ∈ rng(UE )}

paths of UE = {path ; UE (path) = t}.

Γ ` intf : Intf

` Γ ok
rng(IP) ⊂ paths of Γ

` B ok tyvars B = ∅ tynames B ⊂ dom(IP)
tynames L ⊂ T of B

Γ ` (IP , B, L) : Intf (92)

Γ ` impl : intf

Γ ` open unitids ⇒ B
B ` topdec ⇒ B′

Γ ` B′ ⇒ intf : Intf

Γ ` open unitids in topdec : intf (93)

Γ ` impl : intf ′ Γ ` intf ′ ≤ intf : Intf

Γ ` (impl : intf ′) : intf (94)

Γ ` intf ≡ intf ′ : Intf

Γ ` intf ⇒ B,L Γ ` intf ′ ⇒ B,L

Γ ` intf ≡ intf ′ : Intf (95)

Γ ` intf ≤ intf ′ : Intf

Γ ` intf ⇒ B,L B = T, F,G,E
unitid 6∈ dom(Γ) Γ + {unitid 7→ (B,L)} ` intf ′ ⇒ (T ′, F ′, G′, E′), L′

dom(F ) ⊃ dom(F ′) ∀funid ∈ dom(F ′).F ′(funid) ≥ F (funid)
dom(G) ⊃ dom(G′) ∀sigid ∈ dom(G′).G′(sigid) ≥ G(sigid)

(T ′)E′ ≥ E′′ using ϕ E′′ ≺ E
dom(L) ⊃ dom(L′) ∀n ∈ dom(L′). ϕ(L′(n)) = L(n)

Γ ` intf ≤ intf ′ : Intf (96)

Rule 96: The context is extended to ensure T ∩ T ′ = ∅ without disturbing sharing between T and
L or T ′ and L′.
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adecs ` Γ

· ` {} (97)

adecs ` Γ unitid 6∈ dom(Γ) Γ ` intf ⇒ B,L

adecs, unitid : intf ` Γ + {unitid 7→ (B,L)} (98)

Γ ` B ⇒ intf : Intf

` Γ ok ` B ok tyvars B = ∅
dom(IP) = tynames B ⊂ T of Γ
∀t ∈ dom(IP).Γ(IP(t)) = t

B = T, F,G,E T ′ = {t ∈ T ; ∃longtycon.E(longtycon) = (t,VE )}
rng(L) = T \ T ′

Γ ` B ⇒ IP , B, L (99)

Rule 99: Assemblies containing inferred interfaces may be elaborated but not linked, so any choice
for dom(L) will do. Interface equivalence is defined in terms of internal names rather than external
names, so any choice of rng(IP) will do.

Γ ` intf ⇒ B, L

Γ ` (IP , B, L) : Intf
dom(IP) ∩ (T of Γ) = (T of B) ∩ (T of Γ) = ∅

ϕ(t) =
{

Γ(IP(t)) if t ∈ dom(IP)
t otherwise

Γ ` IP , B, L ⇒ ϕ(B), L (100)

Rule 100: The side condition dom(IP)∩ (T of Γ) = (T of B)∩ (T of Γ) = ∅ can always be satisfied
by renaming bound type names.

Γ ` open unitids ⇒ B

` Γ ok B0 = (T of Γ), {}, {}, {}
B1 = B of (Γ(unitid1))

...
Bn = B of (Γ(unitidn))

Γ ` open unitid1 · · · unitidn ⇒ B0 + B1 + · · ·+ Bn (101)
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` Γ ok

∀unitid 7→ (B,L) ∈ Γ.
` B ok, tyvars B = ∅,
tynames B ⊂ (T of Γ), and
tynames L ⊂ (T of B)

∀unitid , unitid ′ ∈ dom(Γ).
If unitid 6= unitid ′,
then (T of B of Γ(unitid)) ∩ (T of B of Γ(unitid ′)) = ∅

` Γ ok (102)

E.2 Realization of the Elaborator for TD

adecs ` open unitids in topdec  impl : intf

impl = open unitids in topdec
adecs ` Γ Γ ` impl : intf

adecs ` open unitids in topdec  impl : intf (103)

Rule 103: A compiled unit contains source code that is evaluated after completion.

adecs ` open unitids in topspec  intf

adecs ` Γ Γ ` open unitids ⇒ B
B ` topspec ⇒ B′ Γ ` B′ ⇒ intf : Intf

adecs ` open unitids in topspec  intf (104)

B ` topspec ⇒ B′

B ` spec ⇒ E B′ = T of E, {}, {}, E tyvars B′ = ∅
B ` spec ⇒ B′ (105)

B ` funspec ⇒ F B′ = T of F, F, {}, {} tyvars B′ = ∅
B ` functor funspec ⇒ B′ (106)

B ` sigbind ⇒ G B′ = T of G, {}, G, {} tyvars B′ = ∅
B ` signature sigbind ⇒ B′ (107)

B ` topspec1 ⇒ B1 B ⊕B1 ` topspec2 ⇒ B2

dom(F of B1) ∩ dom(F of B2) = ∅
dom(G of B1) ∩ dom(G of B2) = ∅
dom(E of B1) ∩ dom(E of B2) = ∅
B ` topspec1 topspec2 ⇒ B1 + B2 (108)
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B ` funspec ⇒ F

B ` sigexp ⇒ (T )E B ⊕ {strid 7→ E} ` sigexp ′ ⇒ (T ′)E′

〈B ` funspec ⇒ F funid 6∈ dom(F )〉
B ` funid(strid : sigexp) : sigexp ′ 〈and funspec〉 ⇒
{funid 7→ (T )(E, (T ′)E′)} 〈+F 〉 (109)

Γ ` impl0 : intf 0 � intf  impl

Γ ` impl0 : intf 0 Γ ` intf 0 ≤ intf : Intf

Γ ` impl0 : intf 0 � intf  (impl0 : intf ) (110)

E.3 Realization of the Linker for TD

` assm  prog

` assm  assm (111)

Rule 111: A compiled assembly contains source code that is evaluated using the rules in Ap-
pendix E.4.

` intf requires unitid

IP(t) = unitid .longtycon

` (IP , B, L) requires unitid (112)

` impl requires unitid

unitid ∈ {unitid1, . . . , unitidn}
` open unitid1 · · · unitidn in topdec requires unitid (113)

` impl requires unitid

` impl : intf requires unitid (114)

` intf requires unitid

` impl : intf requires unitid (115)

` prog ok

prog = assm
` assm complete

` prog ok (116)
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E.4 Dynamic Semantic of Programs for TD

Definition 12. The creation of dynamic TDIL “interfaces” from static TDIL objects, inter(·), is
defined by:

inter : SigEnvSTAT → SigEnv
inter(G) = {sigid 7→ inter(Σ) ; G(sigid) = Σ}

inter : SigSTAT → Int
inter((T )E) = inter(E)

inter : EnvSTAT → Int
inter(SE ,TE ,VE ) = inter(SE ), inter(TE ), inter(VE )

inter : StrEnvSTAT → StrInt
inter(SE ) = {strid 7→ inter(E) ; SE (strid) = E}

inter : TyEnvSTAT → TyInt
inter(TE ) = {tycon 7→ inter(VE ) ; TE (tycon) = (θ,VE )}

inter : ValEnvSTAT → ValInt
inter(VE ) = {vid 7→ is ; VE (vid) = (σ, is)}.

Definition 13. The thinning of a basis by a compiled interface, B ↓ intf , is defined by:

↓: Basis× (Imports× BasisSTAT × Labels) → Basis
(F,G,E) ↓ (IP , (T ′, F ′, G′, E′), L) = (F ↓ F ′, inter(G′), E ↓ inter(E′))

↓: FunEnv × FunEnvSTAT → FunEnv
F ↓ F ′ = {funid 7→ F (funid) ; funid ∈ dom(F ) ∩ dom(F ′)}

where ↓: Env × Int → Env is defined in TD.

` prog ⇒ UE/p, s

({}, {}), {} ` assm ⇒ UE/p, s

` assm ⇒ UE/p, s (117)

s,UE ` assm ⇒ UE ′/p, s′

s,UE ` · ⇒ UE , s (118)

dom(mem of s) ∩ dom(mem of s0) = ∅
(ens of s) ∩ (ens of s0) = ∅

s + s0,UE + {basis 7→ B0} ` assm ⇒ UE ′, s′

s,UE ` basis : intf , assm ⇒ UE ′, s′ (119)

Rule 119: The side conditions can always be satisfied by changing addresses and exception names
in B0.
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dom(mem of s) ∩ dom(mem of s0) = ∅
(ens of s) ∩ (ens of s0) = ∅

s + s0,UE + {basis 7→ B0} ` assm ⇒ p, s′

s,UE ` basis : intf , assm ⇒ p, s′ (120)

unitid 6= basis
unite = 〈internal〉 require unitids in impl

s,UE ` impl ⇒ B, s′ s′,UE + {unitid 7→ B} ` assm ⇒ UE ′, s′′

s,UE ` unitid : intf = unite, assm ⇒ UE ′, s′′ (121)

unitid 6= basis
unite = 〈internal〉 require unitids in impl

s,UE ` impl ⇒ p, s′

s,UE ` unitid : intf = unite, assm ⇒ p, s′ (122)

unitid 6= basis
unite = 〈internal〉 require unitids in impl

s,UE ` impl ⇒ B, s′ s′,UE + {unitid 7→ B} ` assm ⇒ p, s′′

s,UE ` unitid : intf = unite, assm ⇒ p, s′′ (123)

s,UE ` impl ⇒ B/p, s′

UE ` open unitids ⇒ B
s,B ` topdec ⇒ B′, s′

s,UE ` open unitids in topdec ⇒ B′, s′ (124)

UE ` open unitids ⇒ B
s,B ` topdec ⇒ p, s′

s,UE ` open unitids in topdec ⇒ p, s′ (125)

s,UE ` impl ⇒ B, s′

s,UE ` impl : intf ⇒ B ↓ intf , s′ (126)

s,UE ` impl ⇒ p, s′

s,UE ` impl : intf ⇒ p, s′ (127)

UE ` open unitids ⇒ B

B1 = UE (unitid1) · · · Bn = UE (unitidn)

UE ` open unitid1 · · · unitidn ⇒ B1 + · · ·+ Bn (128)
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F Properties of the Semantics

In this Appendix, we outline a meta-theory for the semantics for separate compilation. We argue
that the semantics is sound provided its stubs satisfy certain properties—are suitable—and that
the realizations for TD and TS are suitable. Most of the meta-theory is conjecture; we leave its
refinement and proof for future work.

F.1 Suitability and Soundness

Definition 14 (IL Stubs Suitability). We say that the IL stubs are suitable if:

1. If Γ ` intf : Intf, then ` Γ ok.

2. If Γ ` impl : intf , then Γ ` intf : Intf.

3. If Γ ` intf ≡ intf ′ : Intf, then Γ ` intf : Intf and Γ ` intf ′ : Intf.

4. If Γ ` intf ≤ intf ′ : Intf, then Γ ` intf : Intf and Γ ` intf ′ : Intf.

5. If adecs ` Γ, then ` adecs ok and ` Γ ok.

Conjecture 15 (IL Soundness). If the IL stubs are suitable, then:

1. If adecs ` assm ok, then ` adecs ok.

2. If adecs ` intf : Intf, then ` adecs ok.

3. If adecs ` unite : intf , then adecs ` intf : Intf.

4. If adecs ` impl : intf , then adecs ` intf : Intf.

5. If adecs ` intf ≡ intf ′, then adecs ` intf : Intf and adecs ` intf ′ : Intf.

6. If adecs ` intf ≤ intf ′ : Intf, then adecs ` intf : Intf and adecs ` intf ′ : Intf.

Definition 16 (Elaborator Stubs Suitability). We say that the elaborator stubs are suitable if:

1. ` intf basis : Intf.

2. If adecs ` open unitids in topdec  impl : intf and ` adecs ok, then adecs ` impl : intf .

3. If adecs ` open unitids in topspec  intf and ` adecs ok, then adecs ` intf : Intf.

4. If Γ ` impl0 : intf 0 � intf  impl, then Γ ` impl0 : intf 0, Γ ` intf 0 ≤ intf : Intf, and
Γ ` impl : intf .

Conjecture 17 (Elaborator Soundness). If the IL and elaborator stubs are suitable, then:

1. If ` assembly  assm; edecs, then · ` assm ok and ` edecs ok.

2. If ` edecs ok, then edecs ` adecs, ` adecs ok, and

(a) If edecs ` unitexp  unite : intf , then adecs ` unite : intf .

(b) If edecs ` intexp  intf : Intf, then adecs ` intf : Intf.
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(c) If edecs ` unite0 : intf 0 � intf  unite, then adecs ` unite0 : intf 0, adecs ` intf 0 ≤
intf : Intf, and adecs ` unite : intf .

In addition to well-formedness, suitable linking stubs have to ensure that a complete assembly
can be made into an executable.

Definition 18 (Linker Stubs Suitability). We say that the linker stubs are suitable if:

1. If ` assm complete, then there exists a program prog such that ` assm  prog.

2. If ` intf requires unitid and adecs ` intf : Intf, then unitid ∈ dom(adecs).

3. If ` impl requires unitid and adecs ` impl : intf , then unitid ∈ dom(adecs).

4. If ` assm  prog and ` assm complete, then ` prog ok.

Conjecture 19 (Linker Soundness). If the IL and linker stubs are suitable, then:

1. If ` lscript  assm and ` lscript ok, then ` assm ok.

2. If cdecs ` assms  assm; cdecs ` adecs; and adecs ` assms ok, then adecs ` assm ok.

3. If adecs `deps assm  assm ′ and ` deps ok where deps = (assm ′′, assm); unitids and adecs =
U(assm ′′), then adecs ` assm ′ ok and for every unitid ∈ dom(assm ′), ` deps requires unitid.

4. If ` deps requires unitid and ` deps ok where deps = assm; unitids, then unitid ∈ dom(assm).

5. If adecs ` assm complete, then adecs ` assm ok.

6. If cdecs ` adecs and ` cdecs ok, then ` adecs ok.

7. If adecs ` assms ok, then ` adecs ok.

F.2 Suitability of the TS Realization

Conjecture 20. The realization of the IL static semantics for TS is suitable:

1. If decs ` intf : Intf, then ` decs ok.

2. If decs ` tdecs ok, then ` decs ok.

3. If decs ` impl : intf , then decs ` intf : Intf.

4. If decs ` intf ≡ intf ′ : Intf, then decs ` intf : Intf and decs ` intf ′ : Intf.

5. If decs ` tdecs ≡ tdecs ′, then decs ` tdecs ok and decs ` tdecs ′ ok.

6. If decs ` intf ≤ intf ′ : Intf, then decs ` intf : Intf and decs ` intf ′ : Intf.

7. If decs ` tdecs ⊃ tdecs ′, then decs ` tdecs ok and decs ` tdecs ′ ok.

8. If adecs ` decs, then ` adecs ok and ` decs ok.

Conjecture 21. The realization of the elaborator for TS is suitable:

1. ` intf basis : Intf.
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2. If adecs ` open unitids in topdec  impl : intf and ` adecs ok, then adecs ` impl : intf .

3. If adecs ` open unitids in topspec  intf : Intf and ` adecs ok, then adecs ` intf : Intf.

4. If udecs ` sdecs; tdecs  intf : Intf and ` udecs, sdecs, tdecs ok, then udecs ` decs and
decs ` intf : Intf.

5. If decs ` impl0 : intf 0 � intf  impl, then decs ` impl0 : intf 0, decs ` intf 0 ≤ intf : Intf,
and decs ` impl : intf .

6. If udecs ` topdec  sbnds : (sdecs; tdecs) and ` udecs ok, then udecs ` decs, decs ` sbnds :
sdecs, and ` udecs, sdecs, tdecs ok.

7. If udecs ` topspec  sdecs; tdecs and ` udecs ok, then udecs ` decs, decs ` sdecs ok, and
` udecs, sdecs, tdecs ok.

8. If udecs ` sigbind  tdecs and ` udecs ok, then ` udecs, tdecs ok.

9. If udecs ` sigexp  sig : Sig and ` udecs ok, then udecs ` decs and decs ` sig : Sig.

10. If udecs ` funspec  sdecs and ` udecs ok, then udecs ` decs and decs ` sdecs ok.

11. If udecs `ctx sigid  sig : Sig and ` udecs ok, then udecs ` decs and decs ` sig : Sig.

12. If adecs ` open unitids  udecs, σ and ` adecs ok, then ` udecs ok.

13. If udecs ` decs and ` udecs ok, then ` decs ok.

Conjecture 22. The realization of the linker for TS is suitable:

1. If ` assm complete, then there exists a program prog such that ` assm  prog.

2. If ` intf requires unitid and adecs ` intf : Intf, then unitid ∈ dom(adecs).

3. If ` impl requires unitid and adecs ` impl : intf , then unitid ∈ dom(adecs).

4. If ` assm  prog and ` assm complete, then ` prog ok.

5. If ` assm  bnds : decs and ` assm complete, then ` bnds : decs.

F.3 Suitability of the TD Realization

Conjecture 23. The realization of the IL static semantics for TD is suitable:

1. If Γ ` intf : Intf, then ` Γ ok.

2. If Γ ` impl : intf , then Γ ` intf : Intf.

3. If Γ ` intf ≡ intf ′ : Intf, then Γ ` intf : Intf and Γ ` intf ′ : Intf.

4. If Γ ` intf ≤ intf ′ : Intf, then Γ ` intf : Intf and Γ ` intf ′ : Intf.

5. If adecs ` Γ, then ` adecs ok and ` Γ ok.

6. If Γ ` B ⇒ intf : Intf, then Γ ` intf : Intf.
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7. If Γ ` intf ⇒ B,L, then Γ ` intf : Intf, ` B ok, tyvars B = ∅, tynames B ⊂ T of Γ,
(T of B) ∩ (T of Γ) = ∅, and tynames L ⊂ (T of B).

8. If Γ ` open unitid1 · · · unitidn ⇒ B, then ` Γ ok, unitid1, . . . , unitidn ∈ dom(Γ), ` B ok, and
tyvars B = ∅.

Conjecture 24. The realization of the elaborator for TD is suitable:

1. ` intf basis : Intf.

2. If adecs ` open unitids in topdec  impl : intf , and ` adecs ok, then adecs ` impl : intf .

3. If adecs ` open unitids in topspec  intf and ` adecs ok, then adecs ` intf : Intf.

4. If B ` topspec ⇒ B′ and ` B ok, then ` B′ ok and tyvars B′ = ∅.

5. If B ` funspec ⇒ F and ` B ok, then ` F ok.

6. If Γ ` impl0 : intf 0 � intf  impl, then Γ ` impl0 : intf 0, Γ ` intf 0 ≤ intf : Intf, and
Γ ` impl : intf .

Conjecture 25. The realization of the linker for TD is suitable:

1. If ` assm complete, then there exists a program prog such that ` assm  prog.

2. If ` intf requires unitid and adecs ` intf : Intf, then unitid ∈ dom(adecs).

3. If ` impl requires unitid and adecs ` impl : intf , then unitid ∈ dom(adecs).

4. If ` assm  prog and ` assm complete, then ` prog ok.
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