
Modal Types
for Mobile Code

Tom Murphy VII

Robert Harper (co-chair)
Karl Crary (co-chair)

Frank Pfenning
Peter Sewell (Cambridge)

thesis defense

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

My thesis project is to design and implement a
programming language for distributed computing
based on logic.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Strategy

Tell you what I did

Argue for the thesis statement

Present some of the best ideas from the work

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Thesis statement

Modal type systems provide an elegant and
practical means for controlling local resources
in spatially distributed computer programs.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Modal type systems provide an elegant and practical means for

controlling local resources in spatially distributed computer programs.

what?

A spatially distributed
program is one that spans
multiple computers in
different places.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Modal type systems provide an elegant and practical means for

controlling local resources in spatially distributed computer programs.

what?

They usually do so because
of specific local resources
that are only available in
those places.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Modal type systems provide an elegant and practical means for

controlling local resources in spatially distributed computer programs.

The technology I use is a
modal type system, derived
from modal logic. A modal
logic is one that can reason
about truth from multiple
simultaneous perspectives,
called worlds.

what?

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Modal type systems provide an elegant and practical means for

controlling local resources in spatially distributed computer programs.

I interpret these worlds as
the places in a distributed
program, which leads to a
methodology I call
located programming.

what?

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Modal type systems provide an elegant and practical means for controlling
local resources in spatially distributed computer programs.

Each part of the program is
associated with the place in
which it makes sense. The
language is simultaneously
aware of each place's
differing perspective on the
code and data.

how?

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Modal type systems provide an elegant and practical means

for controlling local resources in spatially distributed computer programs.

To show it is elegant, I
present a modal logic
formulated for this purpose,
show how a language can
be derived from it, and
prove properties of these in
Twelf.

why?

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Modal type systems provide an elegant and practical means

for controlling local resources in spatially distributed computer programs.

To show it is practical, I
extend the language to a
full-fledged programming
language based on ML,
specialized to web
programming. I then build
realistic applications in the
language.

why?

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Outline
This work has a nice end-to-end character.
The talk is arranged according to the same trajectory
as the research, dissertation.

solution:
located programmingproblem

logic abstract
compilation

language and
implementation

applications end

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

The single-vision problem

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

The single-vision problem
Most languages: values and code classified from
a single universal viewpoint.

"integer," "file handle," etc.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

The single-vision problem

This monocularism
leads to failures that are
too early or too late.

Most languages: values and code classified from
a single universal viewpoint.

"integer," "file handle," etc.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

The single-vision problem
Consider the remote procedure call.

Kurt

Bert

let
 val e = 5
 val y = h(e)
in
 print y
end

fun h(e : int) =
 e + 1

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

The single-vision problem
Consider the remote procedure call.

Kurt

Bert

let
 val e = 5
 val y = h(e)
in
 print y
end

fun h(e : int) =
 e + 15

6

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

The single-vision problem
Consider the remote procedure call.

Kurt

Bert

let
 val e = 5
 val y = h(e)
in
 print y
end

fun h(e : int) =
 e + 15

6

also, marshaling

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

The single-vision problem
What about local resources?

Kurt

Bert

let
 val e : file =
 open "thesis.tex"
 val y = g(e)
in
 (* ... *)
end

fun g(e : file) =
 (* ... *)

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

The single-vision problem
What about local resources?

Kurt

Bert

let
 val e : file =
 open "thesis.tex"
 val y = g(e)
in
 (* ... *)
end

fun g(e : file) =
 (* ... *)

?

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

The single-vision problem
What happens depends on the language.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

The single-vision problem
What happens depends on the language.

POD. Program is rejected statically.
"You may only send plain old data."

— [DCOM/CORBA/XMLRPC, etc.]

RPC. Program fails at RPC time.
"Can't serialize local resources."

— [Java/Acute/Alice, etc.]

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

The single-vision problem

DYN. Program continues, might fail in function g.
"Decide at the last second."
— [Dynamically typed languages/Grid/ML, etc.]

MOB. Transparent mobility.
[D'caml, etc.]

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Diagnosis
(POD) is overconservative.

fun g(f : file) = f
occurs in practice!

(Callbacks)

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Diagnosis
(POD) is overconservative.

fun g(f : file) = f
occurs in practice!

(RPC) admits runtime failures.

even on safe programs such as above

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Diagnosis
(POD) is overconservative.

fun g(f : file) = f
occurs in practice!

(RPC) admits runtime failures.

even on safe programs such as above

(DYN) admits runtime failures.

allows fun g(f : file) = f
fails on fun g(f : file) = write(f, "hello")

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

What's going on?
Even though a file handle is a local resource, we
have a single global notion (type) of file.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

What's going on?
Even though a file handle is a local resource, we
have a single global notion (type) of file.

If Bert has a file, he (reasonably) expects to be able
to write to it.

(POD) and (RPC) prevent Bert from ever getting the file.

(DYN) checks that every file access is local.

(MOB) makes every file global.

(LOC) ...
prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Located programming
Instead: treat all code and data as relative to a world.

e.g. Kurt, Burt
allows language notion of "Kurt's file"

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Located programming

Kurt's code

Bert's code

let
 val e : kurt's file =
 open "thesis.tex"
 val y = g(e)
in
 write(y, "hello")
end

fun g(e : kurt's file) =
 e

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Located programming
This excludes unsafe uses statically.

Kurt's code

Bert's code

let
 val e : kurt's file =
 open "thesis.tex"
 val y = g(e)
in
 (* ... *)
end

fun g(e : kurt's file) =
 write(e, "oops")X
type error

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Kurt

Bert

let
 val e : kurt's int
 = 5
 val y = h(e)
in
 print y
end

fun h(e : kurt's int) =
 e + 1

Located programming

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Kurt

Bert

fun h(e : kurt's int) =
 e + 1

Located programming

?
let
 val e : kurt's int
 = 5
 val y = h(e)
in
 print y
end

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Kurt

Bert

fun h(e : bert's int) =
 e + 1

Located programming

let
 val e : kurt's int
 = 5
 val y = h(e)
in
 print y
end

co
nv

er
t

convert

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Located programming
Semantic question: When can we convert
Kurt's t to Bert's t?

file: no, int: yes

This is not the same as marshaling

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

logic abstract
compilation

applications end
solution:
located programmingproblem

language and
implementation

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Modal logic
A logic is concerned with the truth of propositions.

"A true"

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Modal logic
Modal logic is concerned with the truth of
propositions, relative to a set of worlds.

"A true @ w1"

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Modal logic
Modal logic is concerned with the truth of
propositions, relative to a set of worlds.

"A true @ w1"
(A proposition might only be true in some worlds
 because of different contingent facts at those
 worlds.)

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Modal logic
Contingent facts are represented by hypotheses,
themselves relative to a set of worlds.

A true @ w1, B true @ w2 A true @ w1

A true @ w1, B true @ w2 A true @ w2

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Modal logic

(Again, we'll think of worlds as hosts on the network.)

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Modal logic
A proof in modal logic
reasons from these distributed
facts to produce a conclusion.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Modal logic
These proofs interpreted as
programs appear to require
non-local computation, or
"action at a distance."

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Lambda 5
A novel formulation of modal
logic: Lambda 5

reasoning
(computation) is
always local

a single rule allows
us to move facts (data)
between worlds

"get"

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Lambda 5
This formulation of modal logic is:

Logically faithful
(Proved sound, complete, equivalent to
 known logics.)

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Lambda 5
This formulation of modal logic is:

Logically faithful
(Proved sound, complete, equivalent to
 known logics.)

Computationally realistic
(Straightforward type-safe dynamic semantics.)

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Lambda 5
This formulation of modal logic is:

Logically faithful
(Proved sound, complete, equivalent to
 known logics.)

Computationally realistic
(Straightforward type-safe dynamic semantics.)

Not enough
(I study two extensions in detail: classical reasoning
 and global reasoning.)

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Lambda 5
This formulation of modal logic is:

Logically faithful
(Proved sound, complete, equivalent to
 known logics.)

Computationally realistic
(Straightforward type-safe dynamic semantics.)

Not enough
(I study two extensions in detail: classical reasoning
 and global reasoning.)

[All proofs in Twelf]
prev next999/999 99:99Modal types for mobile code Tom Murphy VII

abstract
compilation

applications end
solution:
located programmingproblem

language and
implementation

logic

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Abstract compilation
Next, I take the extended modal lambda calculus
and carefully show how it can be compiled.

Mini version of ML5
(Leaves out the complications of a full-fledged
 language.)

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Abstract compilation
Next, I take the extended modal lambda calculus
and carefully show how it can be compiled.

Mini version of ML5
(Leaves out the complications of a full-fledged
 language.)

Formalize several phases:
Elimination of syntactic sugar

Continuation passing style transformation

Closure conversion

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Abstract compilation
Next, I take the extended modal lambda calculus
and carefully show how it can be compiled.

Mini version of ML5

Formalize several phases

Feedback of ideas into logic/language

Typed compilation is a good exercise
of a language's expressiveness!

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Abstract compilation
Next, I take the extended modal lambda calculus
and carefully show how it can be compiled.

Mini version of ML5

Formalize several phases

Feedback of ideas into logic/language

Typed compilation is a good exercise
of a language's expressiveness!

Prove static correctness for each phase

[All proofs in Twelf]
prev next999/999 99:99Modal types for mobile code Tom Murphy VII

applications end
solution:
located programmingproblem

language and
implementation

logic abstract
compilation

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

ML5
ML5 is an ML-like programming language with a
modal type system.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

ML5
ML5 is an ML-like programming language with a
modal type system.

Its implementation is specialized to web programming.

Exactly two worlds: the browser ("home") and "server"

AJAX-style applications (single page)

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

ML5
ML5 is an ML-like programming language with a
modal type system.

Its implementation is specialized to web programming.

A compiler (ML5/pgh)

A runtime system including a web server

Exactly two worlds: the browser ("home") and "server"

AJAX-style applications (single page)

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Modal type systems
A type system assigns a type to an expression,
to classify the values it may produce.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Modal type systems
A type system assigns a type to an expression,
to classify the values it may produce.

ML5's modal type system assigns a type and world
to an expression, to classify the values it may
produce and the location in which it may be evaluated.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Modal type systems

M : A M : A @ w

v : A v : A @ w
where value can
be used

where exp can
be evaluated

shape of value
that results

shape of value

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Modal type systems

Returns a string and can only be evaluated
on the web browser.

js.prompt "What is your name?" : string @ home

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Modal type systems

Returns a string and can only be evaluated
on the web server.

db.lookup "name" : string @ server

Returns a string and can only be evaluated
on the web browser.

js.prompt "What is your name?" : string @ home

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Variables like js.prompt are the contingent (local)
resources that form the context for type checking.

Local resources

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

js.prompt : string → string @ client, ...

Variables like js.prompt are the contingent (local)
resources that form the context for type checking.

js.prompt : string → string @ client

Local resources

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Local resources
The programmer can declare a local resource by
importing it at a name, type and world.

extern val js.prompt \@1: string -> string @ home
extern val js.alert \>1: string -> unit @ home

extern val db.lookup \>1: string -> string @ server
extern val version \>1: unit -> string @ server

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

ML5 model
ML5 source code includes parts for both the
browser and server.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

ML5 model
ML5 source code includes parts for both the
browser and server.

JavaScript B5 bytecode

ML5

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

ML5 model

Execution begins in the web browser.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

ML5 model

Control may flow to the server and back during execution.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Get
This is done with the language construct from ... get

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Get
This is done with the language construct from ... get

js.alert (from server get version());

Transfers control to server
to evaluate expression.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

js.alert (from server get version());

Transfers control to server
to evaluate expression.

get

"2.0"

Get
This is done with the language construct from ... get

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

js.alert (from server get version());

Transfers control to server
to evaluate expression.

2.0

This is done with the language construct from ... get

Get

get

"2.0"

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Get
The get construct is (exclusively) how control
and data flow between worlds.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Get
The get construct is (exclusively) how control
and data flow between worlds.

Γ from M get N : A @ w

Γ N : A @ w'
Γ M : w' addr @ w + 1 more premise...

Address of remote world
Expression to evaluate(IP/port, etc.)

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Get

Γ from M get N : A @ w

Γ N : A @ w'
Γ M : w' addr @ w + 1 more premise...

This only makes sense for
certain types of values...

When we get, a value v : A @ w
 becomes a value v : A @ w

'

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Γ from M get N : A @ w

Γ N : A @ w'
Γ M : w' addr @ w

When we get, a value v : A @ w
 becomes a value v : A @ w

This only makes sense for
certain types of values...

A mobile

'

Get

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Mobile types
A type is mobile if every value that inhabits it
is portable.

int mobile

(A × B) mobile
B mobile
A mobile

w addr mobile

(ps: mobility has a logical justification)

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Mobile types

(A × B) mobile
B mobile
A mobile

file mobile (A → B) mobile

int mobile

w addr mobile

A type is mobile if every value that inhabits it
is portable.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Mobile types

(A → B) mobile

Would try to access a local database when
called on the client!

(* string -> string @ client *)
from server get db.lookup

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Mobile types

(A → B) mobile

Would try to access a local database when
called on the client!

(* string -> string @ client *)
from server get db.lookup

(ML5 statically excludes such
 wrong-world accesses.)

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Mobility vs. validity
Not every function value is portable, so function
types are not mobile.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Mobility vs. validity
Not every function value is portable, so function
types are not mobile.

However, some particular functions are portable.
We have a way to demonstrate this in the type
system: validity.

(fn x ⇒ x)

(ps: validity has a logical justification)

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Validity

Valid hypotheses are bindings that
can be used anywhere.

x ~ A x : A @ w

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Validity
Just as ML type inference automatically makes
definitions maximally polymorphic, ML5 type
inference makes definitions maximally valid:

(* map ~ ('a -> 'b) -> 'a list -> 'b list *)
fun \@1map f nil = nil
 |\>1map f (h :: t) = (f h) :: map f t

Libraries

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Validity

To validate a binding, hypothesize the existence
of a world ω'. If the value is well-typed there,
then it would be well-typed anywhere, since we
know nothing about ω'.

Γ let val x = v in N : C @ w

Γ, x ~ A N : C @ w
Γ, ω' world v : A @ ω'

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Validity

Γ let val x = (fn x ⇒ x) in ... : C @ w

Γ, ω' world fn x ⇒ x : int → int @ ω' ...

Γ, ω' world, x : int @ ω' x : int @ ω'

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Validity

Note: values only! (cf. ML value restriction)

(* r : int ref @ client *)
val r = ref 0

Γ let val x = (fn x ⇒ x) in ... : C @ w

Γ, ω' world fn x ⇒ x : int → int @ ω' ...

Γ, ω' world, x : int @ ω' x : int @ ω'

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Modalities
The judgments x ~ A and x : A @ w allow us to
define new types that encapsulate the notions
of validity and locality.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Modalities

A A valid value of type A.

A w An encapsulated value of type A
that can be used only at w.

(Can also have as derived forms:)A A

The judgments x ~ A and x : A @ w allow us to
define new types that encapsulate the notions
of validity and locality.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Modalities

A A valid value of type A.

A w An encapsulated value of type A
that can be used only at w.

(Can also have as derived forms:)A A

These are all mobile no matter what A is.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

ML-like features
ML5 has most of the features of core SML.

algebraic datatypes, extensible types

pattern matching

mutable references

exceptions

mutual recursion

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

ML-like features
ML5 has most of the features of core SML.

algebraic datatypes, extensible types

pattern matching

mutable references

exceptions

... and some extensions:
first-class continuations, threads

quote/antiquote

mutual recursion

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

ML-like features
Most features behave as they do in SML.
We usually just need to consider whether a
given type should be mobile.

datatype (a, b) t =
 First of a * int
 | Second of (b at home) * t

The type (t1, t2) t is mobile if both arms
(with t1, t2 filled in) carry mobile types.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

ML-like features
Most features behave as they do in SML.
We usually just need to consider whether a
given type should be mobile.

datatype (a, b) t' =
 First of a * int
 | Second of (b at home) * t'
 | Third of a → b

The type (t1, t2) t is mobile if both arms
(with t1, t2 filled in) carry mobile types.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

ML-like features
The exn type and other extensible types are
always mobile.

exception TagA of int
exception TagB of unit -> unit

(* ! *)
do case (from server get e) : exn of
 \@1TagA _ => ()
 | \>1TagB f => f ()

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

ML-like features
The exn type and other extensible types are
always mobile.

exception TagA of int
exception TagB of unit -> unit

(* ! *)
do case (from server get e) : exn of
 \@1TagA _ => ()
 | \>1TagB f => f ()

The extensible type tags give permission to
retrieve the stored value.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

ML-like features
The exn type and other extensible types are
always mobile.

vexception TagA of int \@3(* valid *)
exception TagB of unit -> unit \>3(* can't be valid *)

(* ! *)
do case (from server get e) : exn of
 \@1TagA _ => ()
 | \>1TagB f => f ()

The extensible type tags give permission to
retrieve the stored value.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Put

Γ let put x = M in N : C @ w

Γ, x ~ A N : C @ w
Γ M : A @ w A mobile

Another construct put can evaluate an expression
and validate the resulting binding, but only if
its type is mobile.

(no communication)

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Example: proxy
let
 \@1extern val db.lookup : string -> string @ server

 \>1(* plookup ~ string -> string *)
 \>1fun plookup s =
 \>1 \@2let \@3put s' = s
 \>2in \>3from server get (db.lookup s')
 \>2end
in
\>1(* ... *)
end

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Ok.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Implementation
The ML5 implementation consists of a compiler,
and a web server that hosts and runs the server
part of programs.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Compilation
The ML5/pgh compiler transforms the source program
into client-side JavaScript and server-side bytecode.

CPS conversion

Closure conversion

Elaboration and type inference

Type and world representation

Code generation

type
directed

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

CPS conversion
CPS conversion allows us to support first-class
continuations and threads.

from ... get ... replaced with to ... go ... :

k (from server
 get e)

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

CPS conversion
CPS conversion allows us to support first-class
continuations and threads.

k (from server
 get e) put back = localhost ()

(to server
 go put ret = e
 (to back
 go k(ret)))becomes

from ... get ... replaced with to ... go ... :

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Type and world representation
Marshaling uses type and world information at
run-time, so we must represent these as data.

α type, ω world, ... A @ w

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Type and world representation
Marshaling uses type and world information at
run-time, so we must represent these as data.

α type, ω world, ... A @ w

α type, uα ~ α rep,
ω world, uω ~ ω rep, ... A @ w

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Closure conversion
Closure conversion explicitly constructs closures
so that we can label each piece of code.

This means abstracting over any free variables:

x : A @ w1, u ~ B C → D @ w2

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Closure conversion
Closure conversion explicitly constructs closures
so that we can label each piece of code.

This means abstracting over any free variables:

x : A @ w1, u ~ B C → D @ w2

∙ (C × A w1 × B) → D @ w2

modalities internalize judgments

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Code generation
For each piece of closed code, we use its world
to decide what code we must generate for it.

@ server - generate bytecode

@ client - generate javascript

@ ω - generate both (polymorphic)

Typing guarantees that code @ server will only
use server resources.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Runtime
The runtime system:

Web server delivers code, starts session
Runs server code, database, etc.
Marshaling and maintaining communication
Thread scheduling, event handling

I'll mention these in the demo.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

language and
implementation

applications end
solution:
located programmingproblem

logic abstract
compilation

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Applications
Built realistic applications with ML5.

Evaluate its practicality, expressiveness
Discover performance bottlenecks
Missing features
Feedback of ideas into language, compiler

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Demo

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

language and
implementation

solution:
located programmingproblem

logic abstract
compilation

applications end

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Conclusion
In conclusion,

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Conclusion
In conclusion,

Modal type systems provide an elegant and
practical means for controlling local resources
in spatially distributed computer programs.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Conclusion
In conclusion,

New programming language for
spatially distributed computing.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Conclusion
In conclusion,

New programming language for
spatially distributed computing.

Express locality of resources

Statically-typed, higher order programming

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Conclusion
In conclusion,

New programming language for
spatially distributed computing.

Based on novel formulation of modal logic.

Express locality of resources

Statically-typed, higher order programming

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Conclusion
In conclusion,

New programming language for
spatially distributed computing.

Based on novel formulation of modal logic.

Mechanized theory and usable implementation.

Express locality of resources

Statically-typed, higher order programming

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Dankon

Bonus topics: security

Thanks! Questions?

tierless

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Dankon

Bonus topics: security

Thanks! Questions?

tierless

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Dankon

Bonus topics: security

Thanks! Questions?

tierless

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Dankon

Bonus topics: security

Thanks! Questions?

tierless

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Dankon

Bonus topics: security

Thanks! Questions?

tierless

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Dankon

Bonus topics: security

Thanks! Questions?

tierless

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Dankon

Bonus topics: security

Thanks! Questions?

tierless

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Dankon

Bonus topics: security

Thanks! Questions?

tierless

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Security
Security is a difficult problem in the presence of
uncooperative participants: We have no real
control over what the client does with his
Javascript.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Security
Compilation obscures some security issues.

let
 extern format : unit -> unit @ server
 val password = "my_cool_password"
 put input = js.prompt ("password?")
in
 from server get
 if input = password
 then (\@1from client get js.alert ("Formatting...");
 \>1format ())
 else ()
end

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Security
Compilation obscures some security issues.

let
 extern format : unit -> unit @ server
 val password = "my_cool_password"
 put input = js.prompt ("password?")
in
 from server get
 if input = password
 then (\@1from client get js.alert ("Formatting...");
 \>1format ())
 else ()
end

Does client source contain
"my_cool_password"?

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Security
Compilation obscures some security issues.

let
 extern format : unit -> unit @ server
 val password = "my_cool_password"
 put input = js.prompt ("password?")
in
 from server get
 if input = password
 then (\@1from client get js.alert ("Formatting...");
 \>1format ())
 else ()
end

server entry point 2

server entry point 1

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Security
Types can help...

let
 extern format : unit -> unit @ server
 val password : string @ server = "my_cool_password"
 put input = js.prompt ("password?")
in
 from server get
 if input = password
 then (\@1from client get js.alert ("Formatting...");
 \>1format ())
 else ()
end

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Tierless programming
Links programming language (Wadler et al.)

built-in notion of "client" and "server" (only)

marshaling can fail at runtime
Hop (Serrano et al.)

based on scheme (just one type)
no static checks

two gets, specialized to client/server

tied to function calls

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

ML5 or bust
Twelf code, implementation, dissertation at

http://tom7.org/ml5/

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

ML5 or bust
Twelf code, implementation, dissertation at

http://tom7.org/ml5/

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

ML5 or bust
Twelf code, implementation, dissertation at

http://tom7.org/ml5/

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Addresses
A host can compute its address with localhost.

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Addresses
A host can compute its address with localhost.

Γ localhost() : w addr @ w

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Addresses
A host can compute its address with localhost.

Γ localhost() : w addr @ w

For now assume we have two worlds client
and server and variables in context:

client : client addr @ server
server : server addr @ client

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

Addresses
client : client addr @ server
server : server addr @ client

from server get
 (\@1db.update ("greeting", "hello");
 \>1from client get
 \>1 js.alert "greeting updated!")

prev next999/999 99:99Modal types for mobile code Tom Murphy VII

