
Pattern Matching and Abstract Data

Types

Tom Murphy VII

3 Dec 2002

0-0

Outline

• Problem Setup

• Views (“Views: A Way For Pattern Matching To Cohabit With

Data Abstraction”, Wadler, 1986)

• Active Patterns (“A New Look at Pattern Matching in Abstract

Data Types”, Pedro, Peña, Núñez, 1996)

• Without language extensions (“Programming with Recursion

Schemes”, Wang, Murphy, 2002)

• In the context of module languages (some thoughts)

• Conclusion

1

Pattern Matching

Pattern matching is a way of conveniently manipulating concrete

data types.

fun cat nil b = b

| cat (h :: t) b = h :: (cat t b)

vs.

fun cat a b =

if List.null a

then b

else hd a :: (cat (tl a) b)

2

Pattern Matching

This is great if we’re working with types that are actually

implemented with the datatype mechanism.

Natural numbers can be thought of as a sort of datatype:

fun fact Zero = Zero

| fact (m as Succ n) = m * fact n

However, implementing natural numbers (for instance) with

datatypes is much too inefficient.

3

Abstraction

Of course, the solution is abstraction. We hide the “dirty”

implementation details behind an interface.

But pattern matching and abstraction are at odds: Pattern matching

insists that the type be concrete while the entire point of abstraction

is to hide such details.

One solution: Wadler’s views.

4

Views

Views: Exhibit an isomorphism between an arbitrary type and a

“datatype” (view).

• Provide in and out functions (that are inverses)

• Can have many views of the same type

• Can hold the type abstract while publishing views (using the

normal mechanisms)

(Note: I’ve translated Wadler’s examples to an SML-like notation.)

5

Views: Natural Numbers

Here’s a sample view of the existing int type.

view int as Zero

| Succ int

with in 0 = Zero

| in n = Succ(n - 1)

and out Zero = 0

| out (Succ n) = n + 1

Zero : int, Succ : int → int (?), and act as

SML constructors.

6

Using Views

fun fib Zero = Zero

| fib (Succ Zero) = Succ Zero

| fib (Succ (Succ n)) =

fib n + fib (Succ n)

7

A Second View

We can add a second view:

view int as Zero | Even int | Odd int

with in 0 = Zero

| in n = if n mod 2 = 0

then Even (n div 2)

else Odd (n div 2)

and out Zero = 0

| out (Even n) = 2 * n

| out (Odd n) = 2 * n + 1

8

Using this View

fun power x Zero = 1

| power x (Even n) = power (x * x) n

| power x (Odd n) = x * power (x * x) n

9

Views

That’s really all there is to it! Wadler gives some other neat

examples, like viewing a list backwards:

view α as nil | α list Snoc α

with in (x :: nil) = nil Snoc x

| in (x :: (l Snoc x’)) = (x :: l) Snoc x’

and out (nil Snoc x) = (x :: nil)

| out ((x :: l) Snoc x’) = x :: (l Snoc x’)

. . . note that in/out are literally inverses. Also note that in invokes the

view recursively by pattern matching against Snoc.

10

More. . .

There are more similar examples in the paper about lists and trees.

11

Weird Stuff: &

Let’s code up the ’as’ pattern (call it &).

view α as α & α

with in x = x & x

and out (x & y) = if x = y

then x

else raise Bogus

fun fact Zero = Zero

| fact (m & Succ n) = m * fact n

This makes sense, but what is the meaning of the expression

1 & 1?

12

Weird Stuff: Guards/Predicates

view int as EvenP of int | OddP of int

with in n = if n mod 2 = 0

then EvenP else OddP

and out (EvenP n) = if n mod 2 = 0

then n else raise Bogus

| out (OddP n) = if n mod 2 = 1

then n else raise Bogus

fun cz (OddP 1) = ()

| cz (EvenP n) = cz (n div 2)

| cz (OddP n) = cz (3 * n + 1)

. . . again, what use are EvenP and OddP outside of patterns? What

if we don’t even want EvenP and OddP to carry arguments?

13

Views: Summary

• (+) Combines pattern matching, data abstraction

• (+) Views behave like existing datatype constructors

• (-) Need to validate that in and out are inverses

• (-) Effectful out functions force the programmer to understand

the pattern compilation algorithm (TILT’s is 1,500 lines)

. . .

14

Views: Summary

• (-) “Unnecessary” symmetry with &, predicates—we really just

want the destructor

• (-) No treatment of typing

• (-) Views are not higher-order

• (-) Not supported in any language

15

Active Patterns

1. Like views, but higher-order.

2. Introduce a type of patterns.

3. Expose the assymetry between constructors and destructors

4. Emphasis is on patterns, since constructors are just functions

5. Strange syntax (examples will be in Haskell)

16

Active Patterns

(* define datatype of

complex numbers (as r,i) *)

data cplx = Cart real real

(* the Imag pattern extracts the i field *)

Imag i match Cart i

(* .. and we can use it like any pattern. *)

isReal (Imag i) = (i == 0.0)

17

Computation, Multiple Arguments

Active Patterns can do computation.

Magnitude (sqrt (r*r + i*i))

match Cart r i

And APs can also be of any arity.

SelfAndNeg x (˜ x) match x

18

Active Patterns: @

“as” is written @ and can have a pattern on each side.

Real r match Cart r

add (Real r1) @ (Imag i1)

(Real r2) @ (Imag i2) =

Cart (r1 + r2) (i1 + i2)

19

Active Patterns: Asymmetry

The assymetry of APs allows us to make sense of patterns that are

just predicates.

Even match n, if n mod 2 = 0

Odd match n, if n mod 2 = 1

cz 1 = ()

cz n @ Even = cz (n div 2)

cz n @ Odd = cz (n * 3 + 1)

To accomplish this with views, we needed to provide canonical

representatives of “Even” and “Odd” integers for use as

constructors. That didn’t make sense.

20

Active Patterns: Typing

If we want to pass around APs, we need to assign them types.

If an AP matches values of type τ and has n arguments of types σ1

through σn, then its type is:

〈σ1, . . . , σn, τ〉

(Not a tuple. Just a crazy notation.)

Even, Odd : < int >

Real, Imag : < real, cplx >

SelfAndNeg : < cplx, cplx, cplx >

21

Higher-order APs

Now let’s write functions that map between predicates and nullary

APs.

pred2ap : (α -> Bool) → < α >

ap2pred : < α > → (α -> Bool)

pred2ap p = let C match x, if p x

in C end

ap2pred C = λ x => case x of

C => true

=> false

22

Higher-order APs: @

We can code up @ itself, too:

@ : < α, α, α >

(x @ x) match x

23

Active Patterns: Summary

The authors formalize their system, and provide a method for

compiling them efficiently, but the details are not interesting in the

context of this class.

1. (+) First class patterns

2. (+) At least as powerful as views

3. (-) Requires separate syntactic classes for active patterns /

variables

4. (-) Location of effects in patterns still obscured

24

Who needs language extensions?

We can get much of the functionality of views by simply coding them

up in existing functional languages.

signature NAT = sig

type t

datatype ’a front = Zero | Succ of ’a

val inj : t front -> t

val prj : t -> t front

end

25

Implementing NAT

structure Nat :> NAT =

struct

type t = int

datatype ’a front = Zero | Succ of ’a

fun inj Zero = 0

| inj (Succ n) = n + 1

fun prj 0 = Zero

| prj n = Succ (n - 1)

end

26

Using Recursion Schemes

open Nat

val one = inj (Succ (inj Zero))

fun fact m = case prj m of

Zero => one

| Succ n => m * fact n

The important things here are the call to prj in the case object,

and the calls to inj in one.

27

Recursion Schemes: Nested Patterns

Nested patterns require a little rewriting:

fun fib n = case prj n of

Zero => inj Zero

| Succ n =>

case prj n of

Zero => one

| Succ m => fib m + fib n

. . . but we can define a function

prj2 : t -> t front front, and then do a two-deep

pattern easily.

28

Recursion Schemes: Saving Typing

To save some more typing, we can provide iSucc (= inj o Succ) and

iZero (= inj Zero), since we always inject after calling one of these

constructors.

The paper then goes on to describe how to program generically

(fold, unfold) using these recursion schemes.

29

Recursion Schemes: Summary

1. Use polymorphic data types

2. explicit in/out functions.

3. (-) Harder to do nested patterns

4. (+) On the other hand, location of effects is explicit

5. (-) Performance penalty

6. (+) No language extension needed

30

Views as signatures

Harper-Stone-like view of datatypes in signatures:

datatype nat =

Zero

| Succ nat

is really

structure nat =

struct

type t

val construct : (unit + t) -> t

val destruct : t -> (unit + t)

end

31

Views as signatures

. . . that is, datatypes are merely an abstract type with coercions

into and out of the underlying recursive sum.

(Recursion schemes are really just making this explicit. The sum

type is the non-recursive polymorphic datatype.)

The datatype declaration gives us one way to match this

signature (by generating the coercions automatically). Why not

others?

32

Views as signatures

structure Nat :>

datatype nat = Zero | Succ of nat =

struct

type t = int

fun construct (Inl ()) = 0

| construct (Inr n) = n + 1

fun destruct 0 = Inl ()

| destruct n = Inr (n - 1)

end

33

Problems with this approach

In SML, these coercions are known to be pure and total.

• Value restriction

• Most compilers attempt to avoid function calls when doing

separate compilation (see Vanderwaart, et al.’s TLDI ’03 paper)

• Same problems with pattern compilation: When do effects

happen? How many times?

34

Conclusion

• Making data abstraction cohabit with other language features

can be tricky

• Views and Active Patterns combine abstraction, pattern

matching

• Much of this functionality can be coded up in existing languages

• . . . but making new language extensions is tantalizing!

35

• Have a good winter break!

36

